
Reconfigurable architecture #2
osana@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp
mailto:osana@eee.u-ryukyu.ac.jp

This and next week

Basics of Verilog HDL

Language to program logic circuit

Simulator: to verify behavior in waveform

Synthesis tool: generates equivalent circuit in gate-level

2

Module and port
In HDL, behavior is described per module basis

Module has “ports” to connect outside

A port is like a terminal

From outside, we can’t see inside a module

A module can contain submodules (as blackbox)

3

Everything as modules

FPGA design include

Your HDL module + IP cores
(imported design)

External device models in
testbench

4

Simulation Testbench

FPGA Board

Your FPGA
RAM

RAM

RAM

DI
M

M

Ex
t.
I/F

 c
hi
p

Peripheral Peripheral

IP core

IP core

PCIe model

Ex
t.
de

vi
ce

Tools and HDL syntax

Not all of HDL syntax is “synthesizable”

Some syntax is valid only for simulation

Used in testbench (we’ll see in later class)

At least, FPGA part must be written in “synthesizable” form

5

Writing HDL
Verilog HDL or VHDL

“Logic circuit in gate level” is possible, but too hard

“Writing RTL behavior” is easier and common

RTL = Register Transfer Level

More recently, high-level synthesis (HLS) to generate RTLs from
C/C++/Java is becoming popular

6

Gate level

Composed by “NAND”, “Flip-flop” or that kind of…

Must be optimized manually: Not realistic for large circuits

Or, obtained from RTL by “Logic synthesis”

7

RTL description

Do what if received this signal in this state

Programmer can give any (meaningful) name to signals

Some “software-like” syntax as “if” statement or conditional
assignments

No details about the final gate-level circuit is required

8

HDL as a programming language

HDL is uncommon as a programming language

Programming language is usually about software

Executed in “up-to-down” manner

HDL describes components, continue working all the time

No beginning or end in HDL world!

9

Logic synthesis
Optimal design for each device technology

NAND gates are not almighty

Every LSI process and every FPGA have different logic cells

Synthesis tools maps RTL to the logic cell libraries

HDL is (basically) common to all device technologies

10

How to learn HDL
Syntax: basically same to logic circuit

Combinational and sequential logic

HDL specific stuff:

Module hierarchy and simulation

… and system organization is much more difficult

11

Schedule

Episode 1: Module, Combinational circuit and Operators

+ Design constraints

Episode 2: Sequential logic and Hierarchical design

Episode 3: Simple testbench and Running simulation

12

Goal of the day
LEDs and slide SWs

With logic gates intermediate

16 LEDs and SWs on board

Also try using push SW

First of all, let’s see the syntax

13

Literals
123: “Normal” numbers are interpreted as a (32bits) decimal

32’h1248abcd : Hexadecimal “1234abcd” of 32bits

b: binary, d: decimal, h: hexadecimal

Inserting “_” between any columns is allowed for better readability

example: 32’h1234_abcd

Single bit of “1” means “True”, “0” is “False”

Vector signal is “False” if all bits are 0

14

Module and port

Module definition

starts by “module”

ends by “endmodule”

endmodule has no “;”

module module_name (ports);
 . . .

endmodule

15

Module and port

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 . . .

endmodule

16

sw_led

4

4
SW

PUSH

LED

Signal has 4 bits,  
LSB is numbered as “0”

Continuous assignment

Assignments in software:

Happens when executed

In hardware:

Happens continuously
(because it’s wired)

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 assign LED = SW;

endmodule

17

sw_led

4

4
SW

PUSH
LED

Ex1: Basic logic gates

AND, NOT, OR gates

18

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]

Logic operators

AND: “&”, OR: “|”, NOT “~”

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 assign LED[0] = PUSH & SW[0];
 assign LED[1] = ~SW[1];
 assign LED[2] = LED[1] & SW[2];

endmodule

19

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]

Name internal signals

“wire” type for assign statement

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire SW1_;
 assign SW1_ = ~SW[1];
 assign LED[1] = SW1_;
 assign LED[2] = SW1_ & SW[2];

endmodule
20

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]

Name internal signals

Assignment can be done within wire declaration

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire SW1_;
 assign SW1_ = ~SW[1];
 assign LED[1] = SW1_;
 assign LED[2] = SW1_ & SW[2];

endmodule
21

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire SW1_ = ~SW[1];
 assign LED[1] = SW1_;
 assign LED[2] = SW1_ & SW[2];

endmodule

Reduction operator

LED[3]: Simplify or’ing call

Operator before signal

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 assign LED[3] = |SW;

endmodule

22

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]

Ex２: Multiplexer
2-input MUX

Not simple with logic operators

Conditional assignment

assign X = (cond) ? value : default_val;

Don’t forget default value

23

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]
0

1

Ex２: Multiplexer

Conditional assignment

assign X = (cond) ? val : default_val;

24

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]
0

1module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 assign LED[0] = PUSH ? SW[1] : SW[0];

endmodule

Ex2.5: Multi-input MUX

2bit select signal

25

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]
00

sw
[0

]
pu

sh

0 1

1 X

Signal decomposition and
concatenation
[] to extract bit(s)

{} to concatenate

New “bundled” signal

Duplication: 
{4{X}} is { X, X, X, X }

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire [1:0] SEL;
 assign SEL = { SW[0], PUSH };

endmodule

26

Ex2.5: Multi-input MUX

Possible with conditional assignment

27

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]
00

sw
[0

]
pu

sh

0 1

1 X

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire [1:0] SEL;
 assign SEL = { SW[0], PUSH };
 assign LED[0] = (SEL==2’b00) ? SW[1] :
 (SEL==2’b01) ? SW[2] :
 SW[3];

endmodule

Conditional operations
Think about circuit!

Don’t care is “x”

For correctness:

Write default value

Check consistency of
conditions

// Using don’t care makes circuit smaller
assign X = (A == 3’b1xx) ? 3 : 
 (A == 3’b01x) ? 2 :
 (A == 3’b001) ? 1 : 0;

// Adder is synthesized: slow and large
assign X = (A < 100) ? B : C;

// With priority: slow
assign X = COND1 ? (COND2 ? A : B) : C;

// Not mutually exclusive: will be broken
assign X = (A[3:2] == 2’b10) ? 1 : 
 (A[1:0] == 2’b11) ? 2 : 3;

28

Gates and Delays
Input / Output transitions

Gate and wire delay

Different input causes
different delay time

Contamination delay and
Propagation delay

29

A

B
Q

A
B
Q

A
B
Q

A
B
Q

Faster path

Slower path

Output settles downNo changes in output

Think about resulting circuit

30

C/L

Combinational
Logic

C/L

C/L

mux

C/L

C/L

C/L

mux

mux

C/L

C/L

Condition affects on # inputs of MUX and # MUX stages

All above is about “Internals”

Thinking about “inside” of the FPGA is not sufficient

Let’s see signal pins of the FPGAs

31

FPGA is general-purpose

Some flexibility of using signal pins

“Dedicated” pins such as power supplies and startup

“User I/O” pins that are fully programmable

“Multi-purpose” pins for user I/O but some special capability
such as clock inputs

32

Front and back of the chip

33
BGA (Ball Grid Array) is popular: pins are regularly arranged solder balls

Xilinx UG475より

Pin maps

34

Colored are user I/O pins, different colors are I/O banks

Pin arrangement and designer
Required to read the data sheet carefully if:

You’re designing FPGA board

Connecting something to board’s GPIO (General Purpose I/O)

Otherwise, we have to just know “what is connected to which pin”

Using off-the-shelf board is (mostly) this

35

Pin assignment: Schematics

36

Pin assignemnt: Schematics

37

Constraints

Pin assignments are not described by HDL

Given to CAD tools as “implementation constraints”

Independent file from HDL

Pin number, voltage, clock frequency, etc.

38

XDC constraints (Vivado)

module sw_led
 (
 input [3:0] SW,
 input PUSH);

set_property PACKAGE_PIN U9 [get_ports SW [0]]
set_property PACKAGE_PIN U8 [get_ports SW [1]]
set_property PACKAGE_PIN R7 [get_ports SW [2]]
set_property PACKAGE_PIN R6 [get_ports SW [3]]
set_property IOSTANDARD LVCMOS33 [get_ports {SW[*]}]

set_property PACKAGE_PIN E16 [get_ports PUSH]
set_property IOSTANDARD LVCMOS33 [get_ports PUSH]

39

UCF constraints (ISE: obsoleted)

module sw_led
 (
 input [3:0] SW,
 input PUSH);

NET “SW[0]” LOC = U9;
NET “SW[1]” LOC = U8;
NET “SW[2]” LOC = R7;
NET “SW[3]” LOC = R6;
NET “SW[*]” IOSTANDARD = LVCMOS33;

NET “PUSH” LOC = E16 | IOSTANDARD = LVCMOS33;

40

