Reconfigurable Architecture (3)

mailto:osana@eee.u-ryukyu.ac.jp
mailto:osana@eee.u-ryukyu.ac.jp

Review for last week:

+ Combinational logic in Verilog HDL

+ Ports and intermediate signals (wire)

+ Continuous assignment (assign): combinational logic
+ Always think about the resulting hardware

« Arithmetic units, multiplexors, contamination/propagation delay,
mutually exclusive conditions -

The other half of logic circuit

+ We've done for combinational logic

Sequential logic

« Flip-Flops + logic gates
+ D-FF (delay FF) + combinational logic
+ Clock signal required

+ Slngle-phase synchronous circuit is easier and better:
all FFs are driven by single clock signal

Please forget:

*+ Fantasy In many textbooks
+ A single, large finite-state machine controls everything
« or, all state transition of the system can be drawn in A4 paper

+ Reality Is far more complicated

Please don’t forget:

+ D-FF + combinational logic = everything

Lo

gic circuit

b —[> Combinational only

H> — p——————{™> Combinational between FFs

CLK [>

other FF pairs

All FFs are synchronous to same clk

(

> /0 Pad

~N

Combinational before / after FF

> — > (or both)

Feed-back path to combinational between

Combinational

Combinational before / between / after

= —) FFs

FF

Path delay

How about path delay from/to I/0O Pads and FFs?

Single-clock design —_—

+ On same clock rising edge:

= FFs capture input signals T

= This changes Iinputs to . }
combinational logics

+ Longest delay determines
clock frequency | {

.......

Assignments and signals

+ Continuous assignments

+ “assign” statement and “wire” type variable (as seen last week)
* Procedual assignments:

+ “always” and “Initial” statements”

+ “reg” type variable

10

Rule on wire and reg

+ All signals (variables) must be declared as reg or wire
+ |n procedural assignments, left side value must be reg type
+ Wire declaration can be omitted for |/O ports or 1bit signals

+ wire/reg Is not literally wires and registers, but something
defined as above

11

Blocking vs Non-blocking

+ Blocking assignment "="

+ Usually used in software: execution is blocked until completed
* Non-blocking assignment "<="

+ A<= B; B<=A; Is done at the same time, values exchanged

+ Naturally done in hardware

12

assign statement and “="

+ "="Is used In assign statements: blocking

* assign statements are independent each other:
they don't block each other

* assign statement has no delay by default
* assign statement with delay blocks “within®™ the statement

+ |nput transitions within delay At is ignored (detalls later)

13

{} iIn C, begin - end in Verilog

« "If" statement control only 1 statement
+ For multiple statements, use blocks: {} in C
+ [n Verilog, begin-end makes a block
+ Multiple non-blocking assignments in a block

+ No blocking assignments are allowed

14

Example: 8bit counter

* Driven by clock rising edge
+ always @ (posedge CLK)
* negedge Is less used

+ This code has no initial value:
results unknown

module counter8 (input wire CLK,
output wire [7:0] COUNT);

reg [7:0] CNT;

always @ (posedge CLK)
CNT <= CNT + 1;

assign COUNT = CNT,

endmodu le

15

Sbit counter with reset

module counter8 (input wire CLK, RST,
output wire [7:0] COUNT);
i (RST) reqg [7:0] CNT;
_ _ always @ (posedge CLK) begin
+ RST Is reset signal if (RST)
CNT <= 0;
else
« |f high, set CNT to O .

It not, run the counter assign COUNT = CNT:

endmodu le

16

LED flashing

- O~ 000 @—-0O—-0@—@ - in visible speed
+ Clock running @ 100MHz

+ 220=1M (1,048,576), 224=16M (106,777,2106)

+ 24Dbit counter makes oHz pulse

+ Same # of FFs and LEDs to manage illumination state

17

Counter first

reg [23:0] CNT;
wire STROBE = &CNT;

+ Free-running 24bit counter

(A

Flash the LEDs

+ On RST, Left-most LED Is on

+ Right rotate on STROBE

reg [23:0] CNT;
reg [15:0] LED;
wire STROBE = &CNT,

always @ (posedge CLK) begin
if (RST) begin
CNT <= 0;
LED <= 16'b1000_0000_0000_0000;
end else begin
CNT <= CNT+1;
1f (STROBE)
LED <= {LED[O], LED[15:1]};
end
end

19

Connect the ports

+ CLK Is crystal oscillator
+ RST Is push button

+ LED 1s output port, declared
as output reg

module led test
(input wire CLK, RST,
output reg [15:0] LED);

reg [23:0] CNT;
wire STROBE = &CNT;

always @ (posedge CLK) begin
if (RST) begin
CNT <= 0;
LED <= 16'b1000_0000 0000 0000;
end else begin
CNT <= CNT+1;
if (STROBE)
LED <= {LED[@], LED[15:1]}
end
end
endmodu le

20

Syntax summary

+ Ports are implicit wires, but write explicitly to avoid bugs
+ always @ (posedge CLK): FF is driven by CLK
+ Use non-blocking assignments “<="

+ “if” statement is available in “always" block

21

“Well-used” syntax

= If (RST)

+ Define "reset” and "running” behavior

Real-world example: using SWs

* Problem #1: Metastabllity

+ Caused by “Intermediate” voltage level (not Hor L) INtO lOgiCc gate:
be careful to asynchronous inputs

+ Problem #2: Chattering
+ Contact bounces on opening/closing switches

+ From 100MHz clock, looks like a sequence of fast on/off

23

Metastability

Strange voltage level of gate output (not H or L)

Gates are designed to lower the probability

Avoided by a series of 2 FFs

2 levels Is considered perfect Input
"Must” be placed in async CLK
INnput

- output | |

24

Double Flopping

module double_flop
(input CLK, 1IN,
output OUT);
reg FF1l, FF2;

always @ (posedge CLK) begin

Chattering

Switch output is not very clean as "off - on — off”
Multiple on/offs may be observed at 100MHz
Can be filtered with assumption that “pressed by finger”

ex) once turned on, ignore transitions for a while

AT T

26

Chattering removal example

module push_to_pulse
(input wire CLK, RST, BTN,
output reg TRIG);

+ |1 clk pulse on button press req [24:0] CNT;

always @ (posedge CLK) begin
if (RST) begin
CNT <= 0;
+ BbHz max. TRIG <= 0;
end else begin
if (CNT==0) begin
if (BTN) begin

+ 225=33,554,432 oNT " <="20_000_00o

end
end else begin
! CNT <= CNT-1;
+ Reset required _ TRIG <= 0;
end
end
endmodu le

Modularize

+ Pack 2 modules into |

RIGGER

P

\/
double flo
push _to pulse

PUSH_IN

+ Double flop + Chattering

Using submodule

+ Instance, port, signal nodute push i ter

input CLK, RST, BTN,
output TRIGGER):

= Module name wire BTN_INT;

double flop df

+ |[nstance name

(.CLK(CLK), .IN(BTN),

push_to_pulse ptp

+ .port

+ (signal)

(.CLK(CLK), .RST(RST),
. TRIG(TRIGGER)) ;

endmodu le

.OUT (BTN_INT));

.BTN(BTN_INT),

29

Ex: Use in LED flashing

module led test
(input CLK, RST, BTN,
output reg [15:0] LED);

wire STROBE;
push_filter pf
(.CLK(CLK), .RST(RST), .BTN(BTN),
. TRIGGER(STROBE));

+ Press button to move

always @ (posedge CLK) begin

Modular design Is important

+ Beauty of duplication: like attaching same filter on every switch

Simpler is better

+ Always simplifty module interface signals
+ Consider how the ports work to communicate

+ SiImple and predictable interface is better:
"1 clock pulse on button press” is a good example

32

Another control structure: case

+ "If" statement Is evaluated with priority
+ Slower If nested
« IT-else-IT-else-It-else--:
+ “case” is evaluated in parallel

+ Sultable for writing state machine

33

Ex: LED flashing state machine

. L
+ “Stop” > "Slow” -> "Fast” circulates on left button
1° 79 1 79 - L R
= "Stop” -> "Fast” shortcut on right button @
L

Interface first

+ L & R switch to push_filter

+ Writhout this, 100M press/s

+ "1 clock output” is good

module led test?
(input CLK, RST, SW_L, SW_R,
output reg [15:0] LED);

wire MODE_L, MODE_R;

push_filter pf_1l
(.CLK(CLK), .RST(RST), .BTN(SW_L),
. TRIGGER(MODE_L));

push_filter pf_r
(.CLK(CLK), .RST(RST), .BTN(SW_L),
. TRIGGER(MODE_R)) ;

// LED control in next page
endmodu le

35

The main FSM

+ NO direct control on LED

* [mportant design principle:
to decompose control FSM
& data pathes into
reasonably small pieces

reg [2:0] MODE;

always @ (posedge CLK) begin
if (RST) begin
MODE <= ‘b001:;
end else begin
case (MODE)
‘b001: begin // stop
if (SW_R) MODE <= ‘b100;
if (SW L) MODE <= ‘b010; end
‘b010: if (SW_L) MODE <= ‘bl00;
‘bl0@: if (SW_L) MODE <= ‘b001;

default: MODE <= ‘b001:
endcase
end
end

// LED control in next page

// slow
// fast

36

LED control

reqg [26:0] CNT;

wire STROBE;

+ 2 (-bit counter = THz @

always @ (posedge CLK) begin

100MHz clk if (RST) begin
LED <= ‘b01;
CNT <= 1;
_ end else begin
« 227 = 134,217,728 d else begln
if (STROBE) LED <= {{LED[@], LED[15:1]}};
end
+ Slow mode @ 1Hz, end

ssign STROBE =

Fast mode @ 0.5Hz \a/

MODE[2] ? &CNT[25:0] : // fast
MODE[1] ? &CNT[26:0] : // slow

0; // stop

37

Summary

+ Seqgquential logic with always statement and reg variables

+ Within always statement, control structures such as If and
case are avallable

+ Also learned about modules and submodules

38

