
Reconfigurable Architecture (3)
osana@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp
mailto:osana@eee.u-ryukyu.ac.jp

Review for last week:
Combinational logic in Verilog HDL

Ports and intermediate signals (wire)

Continuous assignment (assign): combinational logic

Always think about the resulting hardware

Arithmetic units, multiplexors, contamination/propagation delay,
mutually exclusive conditions …

2

The other half of logic circuit

We’ve done for combinational logic

Sequential logic is the rest half

3

Sequential logic

Flip-Flops + logic gates

D-FF (delay FF) + combinational logic

Clock signal required

Single-phase synchronous circuit is easier and better: 
all FFs are driven by single clock signal

4

Please forget:

Fantasy in many textbooks

A single, large finite-state machine controls everything

or, all state transition of the system can be drawn in A4 paper

Reality is far more complicated

5

Please don’t forget:

D-FF + combinational logic = everything

System consists of multiple (small) finite state machines

6

Logic circuit

7

CLK

Combinational FFI/O Pad

Combinational only

Combinational before / after FF 
(or both)

Combinational between FFs

Combinational before / between / after  
FFs

All FFs are synchronous to same clk
Feed-back path to combinational between
other FF pairs

Path delay

8

How about path delay from/to I/O Pads and FFs?

3 5

4

1

1

2

2

1

1

2

3

4

5

1

Single-clock design
On same clock rising edge:

FFs capture input signals

This changes inputs to
combinational logics

Longest delay determines
clock frequency

9

1

2

3

4

5

Assignments and signals
Continuous assignments

“assign” statement and “wire” type variable (as seen last week)

Procedual assignments:

“always” and “initial” statements”

“reg” type variable

10

Rule on wire and reg

All signals (variables) must be declared as reg or wire

In procedural assignments, left side value must be reg type

Wire declaration can be omitted for I/O ports or 1bit signals

wire/reg is not literally wires and registers, but something
defined as above

11

Blocking assignment “=“

Usually used in software: execution is blocked until completed

Non-blocking assignment “<=“

A <= B; B <= A; is done at the same time, values exchanged

Naturally done in hardware

Blocking vs Non-blocking

12

assign statement and “=“
“=“ is used in assign statements: blocking

assign statements are independent each other:  
they don’t block each other

assign statement has no delay by default

assign statement with delay blocks “within” the statement

Input transitions within delay Δt is ignored (details later)

13

{} in C, begin - end in Verilog
“if” statement control only 1 statement

For multiple statements, use blocks: {} in C

In Verilog, begin-end makes a block

Multiple non-blocking assignments in a block

No blocking assignments are allowed

14

Example: 8bit counter

Driven by clock rising edge

always @ (posedge CLK)

negedge is less used

This code has no initial value: 
results unknown

module counter8 (input wire CLK,
 output wire [7:0] COUNT);

 reg [7:0] CNT;

 always @ (posedge CLK)
 CNT <= CNT + 1;

 assign COUNT = CNT;

endmodule

15

8bit counter with reset

if (RST)

RST is reset signal

If high, set CNT to 0 
If not, run the counter

module counter8 (input wire CLK, RST,
 output wire [7:0] COUNT);

 reg [7:0] CNT;

 always @ (posedge CLK) begin
 if (RST)
 CNT <= 0;
 else
 CNT <= CNT+1;
 end

 assign COUNT = CNT;

endmodule

16

LED flashing
○→●→●→●　●→○→●→● … in visible speed

Clock running @ 100MHz

220=1M (1,048,576), 224=16M (16,777,216)

24bit counter makes 6Hz pulse

Same # of FFs and LEDs to manage illumination state

17

Counter first

Free-running 24bit counter

Makes “all-1” pulse @ 6Hz

reg [23:0] CNT;
wire STROBE = &CNT;

always @ (posedge CLK) begin
 if (RST)
 CNT <= 0;
 else
 CNT <= CNT+1;
end

18

Flash the LEDs

On RST, Left-most LED is on

Right rotate on STROBE

reg [23:0] CNT;
reg [15:0] LED;
wire STROBE = &CNT;

always @ (posedge CLK) begin
 if (RST) begin
 CNT <= 0;
 LED <= 16’b1000_0000_0000_0000;
 end else begin
 CNT <= CNT+1;
 if (STROBE)
 LED <= {LED[0], LED[15:1]};
 end
end

19

Connect the ports

CLK is crystal oscillator

RST is push button

LED is output port, declared
as output reg

module led_test
 (input wire CLK, RST,
 output reg [15:0] LED);

 reg [23:0] CNT;
 wire STROBE = &CNT;

 always @ (posedge CLK) begin
 if (RST) begin
 CNT <= 0;
 LED <= 16’b1000_0000_0000_0000;
 end else begin
 CNT <= CNT+1;
 if (STROBE)
 LED <= {LED[0], LED[15:1]}
 end
 end
endmodule

20

Syntax summary

Ports are implicit wires, but write explicitly to avoid bugs

always @ (posedge CLK): FF is driven by CLK

Use non-blocking assignments “<=“

“if” statement is available in “always" block

21

“Well-used” syntax

if (RST)

Define “reset” and “running” behavior

Not all FFs must be initialized on reset

“smaller” reset contributes less load on RST signal

22

Real-world example: using SWs
Problem #1: Metastability

Caused by “intermediate” voltage level (not H or L) into logic gate:  
be careful to asynchronous inputs

Problem #2: Chattering

Contact bounces on opening/closing switches

From 100MHz clock, looks like a sequence of fast on/off

23

Metastability
Strange voltage level of gate output (not H or L)

Gates are designed to lower the probability

Avoided by a series of 2 FFs

2 levels is considered perfect

“Must” be placed in async  
input

24

Input

CLK

FF output

Double Flopping

Just a series of 2 FFs

module double_flop
 (input CLK, IN,
 output OUT);

 reg FF1, FF2;

 always @ (posedge CLK) begin
 FF1 <= IN;
 FF2 <= FF1;
 end

 assign OUT = FF2;

endmodule

25

Chattering

Switch output is not very clean as “off → on → off”

Multiple on/offs may be observed at 100MHz

Can be filtered with assumption that “pressed by finger”

ex) once turned on, ignore transitions for a while

26

Chattering removal example

1 clk pulse on button press

5Hz max.

225=33,554,432

Reset required

module push_to_pulse
 (input wire CLK, RST, BTN,
 output reg TRIG);

 reg [24:0] CNT;

 always @ (posedge CLK) begin
 if (RST) begin
 CNT <= 0;
 TRIG <= 0;
 end else begin
 if (CNT==0) begin
 if (BTN) begin
 CNT <= 20_000_000;
 TRIG <= 1;
 end
 end else begin
 CNT <= CNT-1;
 TRIG <= 0;
 end
 end
 end
endmodule

27

Modularize

Pack 2 modules into 1

Double flop + Chattering

If packed, easily connected
to every switch

28

push_filter

do
ub
le
_fl
op

pu
sh
_t
o_
pu
ls
e

PU
SH

_I
N

TR
IG

G
ER

Using submodule
Instance, port, signal

Module name

Instance name

.port

(signal)

module push_filter
 (input CLK, RST, BTN,
 output TRIGGER);

 wire BTN_INT;

 double_flop df
 (.CLK(CLK), .IN(BTN), .OUT(BTN_INT));

 push_to_pulse ptp
 (.CLK(CLK), .RST(RST), .BTN(BTN_INT),
 .TRIG(TRIGGER));

endmodule

29

Ex: Use in LED flashing

Press button to move

module led_test
 (input CLK, RST, BTN,
 output reg [15:0] LED);

 wire STROBE;
 push_filter pf
 (.CLK(CLK), .RST(RST), .BTN(BTN),
 .TRIGGER(STROBE));

 always @ (posedge CLK) begin
 if (RST) begin
 LED <= 16’b1000_0000_0000_0000;
 end else begin
 if (STROBE)
 LED <= {LED[0], LED[15:1]}
 end
 end
endmodule

30

Modular design is important

Beauty of duplication: like attaching same filter on every switch

Re-use of well-tested module reduces design effort

31

Simpler is better

Always simplify module interface signals

Consider how the ports work to communicate

Simple and predictable interface is better: 
“1 clock pulse on button press” is a good example

32

Another control structure: case
“if” statement is evaluated with priority

Slower if nested

if-else-if-else-if-else…

“case” is evaluated in parallel

Suitable for writing state machine

33

Ex: LED flashing state machine

“Stop” -> “Slow” -> “Fast” circulates on left button

“Stop” -> “Fast” shortcut on right button

34

Stop

Slow

Fast

L

L

L R

Interface first

L & R switch to push_filter

Without this, 100M press/s

“1 clock output” is good

module led_test2
 (input CLK, RST, SW_L, SW_R,
 output reg [15:0] LED);

 wire MODE_L, MODE_R;

 push_filter pf_l
 (.CLK(CLK), .RST(RST), .BTN(SW_L),
 .TRIGGER(MODE_L));

 push_filter pf_r
 (.CLK(CLK), .RST(RST), .BTN(SW_L),
 .TRIGGER(MODE_R));

 // LED control in next page
endmodule

35

The main FSM

NO direct control on LED

Important design principle:  
to decompose control FSM
& data pathes into
reasonably small pieces

reg [2:0] MODE;

always @ (posedge CLK) begin
 if (RST) begin
 MODE <= ‘b001;
 end else begin
 case (MODE)
 ‘b001: begin // stop
 if (SW_R) MODE <= ‘b100;
 if (SW_L) MODE <= ‘b010; end
 ‘b010: if (SW_L) MODE <= ‘b100; // slow
 ‘b100: if (SW_L) MODE <= ‘b001; // fast

 default: MODE <= ‘b001;
 endcase
 end
end

// LED control in next page

36

LED control

27-bit counter ≒ 1Hz @
100MHz clk

227 = 134,217,728

Slow mode @ 1Hz,  
Fast mode @ 0.5Hz

reg [26:0] CNT;
wire STROBE;

always @ (posedge CLK) begin
 if (RST) begin
 LED <= ‘b01;
 CNT <= 1;
 end else begin
 CNT <= CNT+1;
 if (STROBE) LED <= {{LED[0], LED[15:1]}};
 end
end

assign STROBE = MODE[2] ? &CNT[25:0] : // fast
 MODE[1] ? &CNT[26:0] : // slow
 0; // stop

37

Summary

Sequential logic with always statement and reg variables

Within always statement, control structures such as if and
case are available

Also learned about modules and submodules

38

