Reconfigurable Architecture (4)

OSana@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp

2 weeks ago:

Continuous assignment (assign) for combinational logic
wire type signals
Blocking assignment operator (=)
Conditional assignment by “?” operator

Pay attention for multiplexors

Last week:

Procedural assignment (always) for sequential logic
Clock signal in “always @ (:**) “ (usually posedge)
reg type signal ("output reg” Is also OK)
Non-blocking assignment operator (<=)

Control structures such as “if” and “case” are available

This week:

Behavior verification with HDL simulator
Things under test: last week’'s contents
See how to writing a testbench

Simulation flow with Vivado simulator is also shown

Basic design flow

RTL [) Gate-level
L Logic synthesis L.
description o9) description
BN
Technology
5 mapping

Simulator Place & route

/ Configuration

Testbench File

Simulate always

In all steps of design flow
RTL simulation, Post-synthesis simulation, Post-place & route--:

RTL simulation is most important, and usually sufficient for
FPGAS: because retry is possible If real-chip doesn’t work

Testbench iIs required

Circuit never work alone itself
Some kind of external input I1s necessary

Visual confirmation on waveform is not always perfect / possible
orintf()-like debug is also powertul in HDL

Especially for event detection: then check wavetorm

Verilog simulators

Xilinx Vivado simulator in this class
Cadence: NCsim (NC-Verilog)
Synopsys: VCS
Mentor Graphics: ModelSim

Stephen Williams: Icarus Verilog (open source)

Waveform viewers

Integrated with simulator engine
Vivado Simulator, ModelSim
Or provided separately

VCS (DVE), NCsim (simvision), lcarus Verilog (gtkwave)

Waveform files

VCD (Value Change Dump): standard ASCIl format
VCD Is accessible by all simulators and viewers, but large
Commercial simulators have their proprietary, compact formats

VPD (veD plus): Synopsys, SHM (Simulation History Manager): Cadence,
WLF (waveform Log File?): Mentor Graphics

10

Testbench vs RTL (1)

Testbench has “flow of time”
initial statement, $finish, and timescale

RTL has only events, but no beginning, history or end

Testbench vs RTL (2)

Testbench has no port
Because testbench has everything outside RTL
Testbench i1s not for synthesis: all syntax in Verilog is available

System tasks and many other syntax for simulation control

12

Writing flow of time (1)

“timescale : specity unit time and time resolution
““timescale 1ns/1ps” iIs commonly used
“#17 for 1ns delay
Delays < 1ps are rounded off

#: delays evaluation or assignment (along timescale)

13

Writing flow of time (2)

initial: procedural assignments evaluated at t=0
Time course events with # operator

always #: procedural assignments periodically evaluated
always # (10) to be evaluated every 10 unit time

Convenient for generating clock signals

14

Example testbench: Step 1

"timescale 1ns/1ps
Clock perIOd of 10ns: module testbench ();
]OOMHZ reg CLK, RST;

initial CLK <= 1;
always # (5) CLK <= ~CLK;
1 1ns to reset
initial begin
RST <= 0;
31ns to release reset #11
RST <= 1;
#20
No “unit under test” yet s

endmodu le

15

Example testbench: Step 2

_ "timescale 1ns/1ps
With parameter module testbench ();

reg CLK, RST;
: parameter real STEP = 10;
Better abstraction for

initial CLK <= 1;

clock period always # (STEP/2) CLK <= ~CLK;
initial begin
RST <= 0;
Real type to prevent loss P s
. RST <= 1;
of digits #(2+STEP)
" RST <= 0;
(ex: Step=4 and 1.1*Step) end

endmodu le

RTL constructs in 1B

Ex: Clock counter

Good with waveform
viewer

Also convenient with
$display (shown latery and
other system tasks

initial CLK <= 1:
always # (STEP/2) CLK <= ~CLK;

reg [31:0] CLK;
always @ (posedge CLK)
CNT <= RST ? 0 : CNT+1;

initial begin
RST <= 0;
#(1.1%STEP)
RST <= 1;
#(2xSTEP)
RST <= 0;
end

17

System tasks

Command-like constructs for simulators
Handling waveform files
Displaying messages or reading/writing files in simulation
Mathematical functions in real ¢p) type: $sin, $cos:--

Mostly ignored by synthesis tooIs (or causes an error)

18

$display, $write: stdio (1)

$display (“format”, signall, signal2---);
orintf()-like function with newline at the end ($write w/o NL)
%b: binary, %d: decimal, %h: hexadecimal, %f: real
\t and \n for tab and newline

Called within initial / always block

19

$monitor: stdio (2)

Similar to $display, called on its change

$monitoron / $monitoroff to suspend and resume

20

$f{display, write, monitor)

File access, almost same with standard C library
mcd = $fopen(“filename?);
$fdisplay(mcd, “format”, signal, signal---);

$fclose (mcd);

Obtaining simulation time

$realtime
Returns “real” time, in second
$display(“Time = %f ”, $realtime);
$time

o4bit integer, unit is timescale

22

Terminating simulation

$finish: terminates simulation

Some simulators displays CPU time with $finish(1) or $finish(2)

(while others don’t support this)

In Vivado simulator, this iIs not mandatory because length of
simulation can be specified in GUI

Important with command-line based simulators

23

Data conversion

$bitstoreal, $realtobits: real <-> 64bit signal in IEEE-754 standard
Convenient in debugging scientific computing applications
$itor, $rtoi: real <-> integer

$random, $sin, $cos,:--: many other (mathematical) functions

24

Saving waveform

$dumpfile(“foo.vcd”); save waveform in “foo.vcd”
$dumpvars(0); Record all signals in VCD file above
Vendor specific system tasks for vendor specific files

In Vivado simulator, no $dumpfile is required to see waveform

25

System tasks: summary

$display, $monitor, $write, $fdisplay, $fmonitor, -
$realtime, $time

$finish

$bitstoreal, $realtobits, $itor, $rtoi, $sin, $cos, -

$dumpfile, $dumpvars

Module under test (uuT)

Becomes a submodule of testbench

Input signals generated In testbench, usually as reg variable

Other system model (l.e, DRAMSs) may also included as
submodules, and connected to UUT the by wires

Output signal may be connected wires, or left unconnected

27

Simple example

"timescale 1ns/1ps
module sw_led

module sw led tb (); (
reg [3:0] SW; input wire [3:0] SW,
reg PUSH; input wire PUSH,
wire [3:0] LED; output wire [3:0] LED
) ;
sw_led uut (.SW(SW), .LED(LED),
. PUSH(PUSH)) ; wire SW1_ = ~SWI[1];
assign LED[@] = PUSH & SWI[O];
initial begin assign LED[1] = SW1_;
SW <= 4'b0001; PUSH <= 0; assign LED[2] = SW1_ & SW[2];
#(10) SW <= { SW[2:0], SWI[3] }; assign LED[3] = |SW;
#(10) SW <= { SW[2:0], SWI[3] };
end endmodu le

endmodu le

Observing signals

Wavetorm viewer: walking down module hierarchy
Can see any signal in the design,

But usually not easy

29

Test logic iIn HDL

Writing test assistance logic In testbench
Adding signhals such as "OK" with simple combinational logic
Using $display in some specific conditions

Testbench can access signals inside UUT

30

Accessing sighals inside

For simulation only:
.e) uut.SWI1

Can go even deeper by:
iInstl1.inst2.inst3.signal

Not good for synthesis

Not possible iIn VHDL

module sw_led

(

input [3:0] SW,

input
);

wire SW1 =

assign LED[O.
assign LED[1:
assign LED[2.
assign LED[3:

endmodu le

PU

~SW

SH,

output [3:0] LED

[1];

PUSH & SWI[0Q];
SW1 ;

SW1 & SWI[2]:
| SW;

31

Try It

Simulate (and implement next week) IN Vivado
Write a testbench and RTL
A “project” must be generated first, with target device

For simulator, the target device is not essential

32

Where to place source files

Inside project tolder, In Vivado's default

CAD generates a lot of files,
separating your own source code Is important

Project Is sometime broken, or becomes a problem in reuse

33

Typical directory organization

home

Separate source and project

Source code Is managed

some_project

manually
Project only refers the sre || vivado || core | sim
source files Your Vivado P

(for other
source project cores simulators)

34

FPGA ordering # (or model #)

Device family
Xilinx: Virtex, Kintex, Artix, Zynqg, Spartan, -
Altera: Stratix, Arria, Cyclone, MAX, -
Device size and additional features

Package and speed grade

35

Example of Ordering #

Speed Grade: 1
Family: Artix-7 l Package: CSG324

‘ Size: 100T ‘ Temperature range: Commercial

XC7A1®®T 1CSG324C

Serial Transcelver TT 324 Pins

Package type Pb-free

Hands-on

Create a Vivado project
Write a simple RTL and testbench
Then run simulation

For simpleness, source files in project directory

37

Launch Vivado

* and "Create Project”

Vivado 2017.3

File Flow Tools Window Help Quick

VIVADO!

HLx Editions

Quick Start

Create Project >

Open Project >

Open Example Project >

Tasks

Manage IP >
Open Hardware Manager >

Xilinx Tcl Store >

Learning Center

Documentation and Tutorials >
Quick Take Videos »

Release Notes Guide »

Tcl Console

Q = = I B HE

start_gui

=]

& XILINX

ALL PROGRAMMABLE

Recent Projects
vivado2

mefosanal/work/mblazefvivado?2

vivado-test

home/osanal/work/cluster/vivado-test

kc705-riffa

me/osanal/work/cluster/kc705-riffa
KC705_Gen1x8If64
home/osanalwork/riffalriffa_2.2.2/source/fpga/xilinx/kc705/KC705_Gen1x8If64/prj

kc705-riffa
ho me/osana/wo H cluster/tmp } C

kc705-riffa

me/osanal/work/tmp/cluster/kc705-riffa
vivado
home/osanal/work/cluster/netfpgalvivado
vivado
home/osana/work/nexys4/vivado
Recent IP Locations
core
home/osanal/work/cluster/src/aurora/netfpga
core
home/osana rk/cluster/s slave/ku04
core
home/osanal/work/cluster/src/top/pcie-master/netfpga
core
home/osanal/work/cluster/src/top/pcie-master/kc705

core v

? 00X

38

Create project (1/5)

®OO x| New Project

Create a New Vivado Project
This wizard will guide wou through the creation of a new project.

To create a Vivado project vou will need to provide a name and a location for your project files.
Next, vou will specify the type of flow you'll be working with. Finally, you will specify your project
sources and choose a default part.

To continue, click Next.

Create project (2/5)

O

Project Name

X| New Project

Enter a name for yvour project and specify a directory where the project data files will be stored.

Project nhame: \m’vado_lab_sim

Name and location R

Create project subdirectory

Project will be created at: fhomejfosanafvivado_lab_sim

Name “vivado lab sim”

Folder with the project
name IS created

< Back H Next >

Cancel |

40

Create project (3/5)

O | New Project
Project Type
Specify the type of project to create.

@ RTL Project
You will be able to add sources, create block designs in IP Integrator, generate P, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time

"RTL Project” is the basic

You will be able to add sources, view device resources, run design analysis, planning and implementation.

() 1O Planning Project
Do not specify design sources. You will be able to view partfpackage resources.

Still have nO SOurce COde: e ICmri‘ajeliltrete&?‘-.n’Pi*:;jc'iecftprojectfrclmaSvm:llifﬁyf,){STorISEProjectFile.
"Do not specify sources:--

59 Create a new Yivado project from a predefined IP Integrator template design.

< Back H MNext > Cancel |

Create project (4/5)

O | New Project
Default Part

Choose a default Xilinx part or board for vour project. This can be changed later.

Choose device

Select: | & Parts | @ Boards
4 Filter

Product category. | All > ‘ Package:

Family. All v ’ Speed grade:

XC/7A100TCSG324-1 T T

| Reset All Filters |

ElE|E
4
4

Search: |C.- xc7al00tcsg | (4 matches)

[fO Pin Available LUT . Block Gh GTXE:z
‘ Part ‘ Count ‘ IOBs ‘ Elements ‘ FlipFlops ‘ RAM S ‘ DSPs ‘Transceivers Trans(

- 19 79 - @ xc7alo0tcsgi24-3 324 210 63400 126800 135 240 0 0

r lte r I r l ea r< : Ie O r @ %c72100tcsg324-2 324 210 63400 126800 135 240 0 0

b) & %c7alootcsg324-2L 324 210 63400 126800 135 240 0 0

& xc7al00tcsg324-1 224 210 63400 126800 135 240 0 0

| |
fan I|Iy (Artlx—;) a D
< Back H Next > \ Cancel

Create project (5/5)

X' New Project

New Project Summary

() Anew RTL project named “vivado_lab_sim' will be created.

(i) The default part and product family for the new project:
Default Part: xc7al00tcsg224-1
Product: Artix-7
Family, Artix-7
Package: csg324
Speed Grade: -1

Check the settings

VIVADO!

To create the project, click Finish

< Back Finish | | Cancel |

Vivado screen

” project_1 - [fhome/osana/work/cluster/project_1/project_1.xpr] - Vivado 2017.3

rﬁ: Edit Flow Tools Wirld‘owwLaiut z:_ﬁew Help Juick Access “Default I_ayou't” makes
S o PROJECT MANAGER - project_1 : ‘ reset _the Screen

v PROJECT MANAGER
£+ Settings

Project Summary

Qa T 2 +

Design Sources

Add Sources Settings Edit

Language Templates Project name: project 1
Project location: /home/osana/work/cluster/project_1
Product family: Artix-7

Project part: Xc7al00tcsg324-1

Constraints
Simulation Sources

Design

¥ IP Catalog
sim_1
IP INTEGRATOR

Create Block Design Top module name: Not defined

Open Block Design Target language: Verilog

Hierarchy

, Simulator language: Mixed
Generate Block Design

Synthesis Implementation

SIMULATION

Run Simulation

Sotirce code, etc,

Messages:
Part: XC7al00tcsg324-1 Part:
Properties ? 00> Strategy: Vivado Synthesis Defaults Strategy:

SRR D es| g N Report Strategy: Vivado Synthesis Default Reports Report Strategy:
»F Incremental compile:

> o Flow

IMPLEMENTATION

Hierarchy Libraries Compile Order 5:

RTL ANALYSIS

DRC Violations Timing

» Run Implementation Run Implementation to see DRC results Run Implementz

> Open Implemented Design
Utilization

PROGRAM AND DEBUG : o
Run Synthesis to see utilization results Run Implementz
¥ii Generate Bitstream

> Open Hardware Manager

Tcl Console | Messages |Log | Reports | Design Runs X

Q| = I

Constraints ~ Status WNS TMS wue I THS TPWS | TotalPower Fofled Routes LUT FF BRAMs URAM DSP St

omma s LOgS and messages

“Add Sources” to
add one

Add source code (1/4)

vivado_lab_sim - [/home/osana/vivado_lab_sim/vivado_lab_sim.xpr] - Vivado 2014.3

File Edit Flow Tools Window Layout Yiew Help

Pl Al D D ¥ %K X G| Default Layout v £) Ready
Flow MNawvigator K Project Manager - vivado_lab_sim) 4
A I = Sources — O X L Project Summary X O X
L aze et BE e . -
4 Project Manager T “* Project Settings
: : Design Sources =
@ Project Settings , i . " Project name: vivado_lab_sim
: Constraints
&Y Add Sources Simulation Sources 2epject location: fhomejosanafvivado_lab_sim
'V Language Templates L =sim_1 yduct family: Artix-7
. Hierarchy Update »
LJ IP Catalog B e)ject part: #xC/alootcsgs24-1
@ Refresh Hierarchy)
b module name: Not defined
4 |P Integrator IP Hierarchy » -
& Create Block Design Hierarchy Libraries Compile Order Edit Constraints Sets. . hthesis
<5 Sources V Templates it Si i _
Edit Simulation Sets. .. _— = Not started
y & -
Properties o Add Sources. .. VAIt+A ssages: No errors or warnings
4 Simulation 0—'5‘ Part: ¥C7al0o0tcsg324-1
f& Simulation Settings Strategy. Yivado Synthesis Defaults
(l) Run Simulation
4 RTL Analysis o tons [~]
N | [T J D
@~ Open Elaborated Design
Design Runs — 0O 2 X
4 Synthesis Q Name | Constraints | wns | TNS | wHS | THS | TPwS | Failed Routes | LuT | FF | BF
3 Synthesis Settings e Q—[_ synth_1 constrs_1
- — = impl_1 constrs_1
2 Run Synthesis e Pl -
.'.7.
4 |mplementation
{% Implementation Settings
[» Run Implementation
<] [«] l [»]
4 Program and Debug O = Tcl Console Messages [d Log 2 Reports 3> Design Runs

)

JOVIO MO8T3V —X 27 TILEBETREER

45

+ RTL corresponds to
"‘Design Source”

Add source code (2/4)

— | Add Sources

VIVADO!

HLx Editions

£ XILINX

(2)

Add Sources

This guides you through the process of adding and creating sources for your project

Add or create constraints

® Add or create design sources

Add or create simulation sources

—

Cancel

46

Add source code (3/4)

“Create File” because there’s
no file yet

Name “sw led"

It there’'s already source file,
do "Add Files’

4
(
\

£
()
"/

N\ Create Source File

Create a new source file and add it to your

project.

File type:
File hame:

File location:

Add or Create Design Sources

Specify HDL and netlist files, or directories containing HDL and ne

disk and add it to your project.

| Incex | MName |

Library | Location

ve verilog

sw_led

o <Local to Project>

| QK H Cancel |

X d Sources

J

@ 1

sw_led. v

xil_defaultlib <Local to Project>

Add Files. ..

‘ ’ Add Directories. .. ‘ ’

Create File...

< Back

t files, to add to your project. Create a new source file on

Finish

H Cancel |

47

Add source code (4/4)

O \ Define Module

Define a module and specify IO Ports to add to wour source file.

For each port specified:
MSE and LSB walues will be ignhored unless its Bus column is checked.
Ports with blank names will not be written.

Module Definition

Module name: ‘5w_|ed|]

IfO Port Definitions
Port Name | Direction | Bus | MSB | LSB | |

Vivado will ask the module’s a9 0
port organization

Just ignore It .

H Cancel |

O \ Define Module

o The module definition has not been changed.

L

Are you sure you want to use these values?

Add testbench

+ “Simulation Source” Is that
+ Name “sw led test”

+ Rest I1s same to RTL

— | AddSources]
VIVADO!

HLx Editions

& XILIN

49

Design hierarchy

Design Sources = RTL 50“_':?: B lE
A\ gy A O [

Desigh Sources (1)

Simulation Sources = f @bz sw_led (5w led v
o= C '
Testbench + RTL gy

®—{ > Simulation Sources ()

LQ— sim_1 (2)

. —we e SWoled (sw led)
POSSIbIe (create other simulation set Hierarchy | Libraries | Compile Order
é» Sources V' Templates

than sim_1)

50

Example

Source code In the last slide
today

sw/(3]
sw|2]
sw(1]

sw/|O]

push

sw led

led[3]
led|2]
led[1]

led[O]

51

Design hierarchy review

RTL module under testbench b sm.1

‘Instance name - module
name” IS shown

Hierarchy Libraries Compile Order

ih Sources Templates

52

Simulation settings

‘Settings” in Flow navigator

Simulation settings —
Simulation — runtime to O

Default is 1000ns

%

General

S
simulation

synthesis
Implementation

,j\},

Bitstream

3 F

IP

X Project Settings

Simulation

Target simulator:

Simulator language:
Simulation set:

Simulation top module name:
Clean up simulation files

[] Generate scripts only

Vivado Simulator A
Mixed v
e Sim_1 v
sw_led_test ’ }:|

Compilation Elaboratior Simulation Netlist

¥sim. simulate. runtime™
xsim. simulate. uut
}¥sim. simulate. wdhb
¥sim.simulate. saif

0

¥sim. simulate. xsim.more_options

xsim.simulate.runtime®
Specify simulation run time

Advanced

OK

H Cancel H Apply |

Run compilation

Run Simulation —
Run Behavioral Simulation

Compiler will be launched

Post-synthesis and other
simulation i1s also possible

a RTL Analysis

a4 Synthesis
f”; Synthesrs

4 Simulation

&5 Simulation Settings

’HJ_Ul Ru n S”n-u ot oo

=¥ Open

Run Behawvioral Simulation

L= AR LR LY P

I

54

Simulation

QO O \, vivado_lab_sim - [/home/osana/vivado_lab_sim/vivado_lab_sim.xpr] - Vivado 2014.3
File Edit Flow Tools Window Layout Yiew Run Help |
il P D D ¥ H K T [E|2Dpefault La v N KR : : T '
g] | | ¥ ¥ | . A= yout : R I h f d Ready
A ’ (2) run simulation to the specified time
Flow Nawigator K Behavioral Simulation - Functional - sim_1 - sw_led_test 4
A X = Scopes — O 2 X Objects — 0O 2 X v sw_led. v X @9 sw_led_testy X BB Untitled 3 X [R Kt
|ZI 4 7 =) 1= - @ =] Fix) (= . - ! A
4+ Project Manager \ X 5 ||| @ 3G » = " ! \.O N [Ij @ @ é W)
g oo . Name | Design Unit | Block Type Name | Walue |Data Typ
@ Project Settings @ 4 sw_led_test sw_led_test Verilog Mo... | @29 SW[2:0] 1000 Array
&% Add Sources L@ uut sw_led Verilog Mo... E PUSH 0 Logic N EERERY
—pror b Verilog Mo. . | [EEETESE S — :
B s 29 g llog Mo... | =3 LED[3:0] 11010 Array || o .
_F IP Catalog Q) & [2]

Module hierarchy Sionals | N eo e expandedﬁ
alp Intigrator | 1gNals In W o
35 Create Block Design Chosen N Stance & PUSH _H

- o o™ LED[3:0] . 0010 ¢ 1010 & 1011 3 1000 B
Kl 10 © % 3]
s Scope &5 Sources | , (2]
4 Simulation Simulation Object Properties N T T "
 Simulation Setings AN T (1) Drag signals to show here —
() Run Simulation “% LED[3:0]
. [«
4 RTL Analysis Name: fsw_led_test/LED]
@* Open Elaborated Desigh ale: 1010 ‘ | H
. syitest Lo S I
5 synthesis Settings L 2] J [Kl L)
@ Run Synthesis Tcl Console — 0O 2 X
x| *3 -
i # run 0 .
: e INFO: [USF-X51m-96] X5im completed. Design snapshot 'sw_led_test_hehav' loaded. $d I d h h
Implementation .
‘ P ! il INFO: [USF-XSim-97] XSim simulation ran for O ISp ay an Ot er messages ere
fﬁ? Implementation Settings & Taunch_simulation: Time (s): cpu = Q0:00:03 ; elapsed = 00:00:07 . Memory (MB): peak = 5926.645 ; gain = 0.000 ; free physical = 28215 ; free virtual = 47272 B
D Run Implementation = | FUn 79 s |E
'] >
% Kl |]
Program and Debu (v | ,
‘ i _ g- LI 2 Tcl Console Messages L Log

Sim Time: 70 ns

To run again---

To add signal(s) to waveform, reset and run again

L

RGO 7o]lns -]z 11 6

Today’s source code

“timescale 1ns/1ps

module sw_led _tb ();

reg [3:0] SW;
reg PUSH;
wire [3:0] LED;

sw_led uut (.SW(SW),
. PUSH(PUSH)) ;

initial begin

¢monitor(“%st SW: %b, PUSH: %b”, $time, SW, PUSH);

.LED(LED),

SW <= 4'b0000; PUSH <= 0;
#10 SW <= 4'b0001;

#10 PUSH <= 1;

#10 SW <= { SW[2:
#10 SW <= { SW][2:
#10 SW <= { SW[2:

end
endmodu le

NDMNN

(S RO R Y

4)

47

4)

SW[3]
SW[3]
SW[3]

w w W

module sw_led

(

input wire [3:0] SW,

input wire PUSH,
output wire [3:0] LED
);

wire SW1_ = ~SW[1];

assign LED[@] = PUSH & SW[O];

assign LED[1] = SW1_;

assign LED[2] = SW1_ & SWI[2];

assign LED[3] = |SW;
A= endmodu le

Just copy and paste to 1B + RTL file, then it’ll work

57

