
Reconfigurable Architecture (4）
osana@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp

2 weeks ago:
Continuous assignment (assign) for combinational logic

wire type signals

Blocking assignment operator (=)

Conditional assignment by “?” operator

Pay attention for multiplexors

�2

Last week:
Procedural assignment (always) for sequential logic

Clock signal in “always @ (…) “ (usually posedge)

reg type signal (“output reg” is also OK)

Non-blocking assignment operator (<=)

Control structures such as “if” and “case” are available

�3

This week:

Behavior verification with HDL simulator

Things under test: last week’s contents

See how to writing a testbench

Simulation flow with Vivado simulator is also shown

�4

Testbench

Simulator

Basic design flow

�5

RTL
description Logic synthesis

Technology
mapping

Place & route

Configuration
File

Gate-level
description

Simulate always

In all steps of design flow

RTL simulation, Post-synthesis simulation, Post-place & route…

RTL simulation is most important, and usually sufficient for
FPGAs: because retry is possible if real-chip doesn’t work

�6

Testbench is required
Circuit never work alone itself

Some kind of external input is necessary

Visual confirmation on waveform is not always perfect / possible

printf()-like debug is also powerful in HDL

Especially for event detection: then check waveform

�7

Verilog simulators
Xilinx Vivado simulator in this class

Cadence: NCsim (NC-Verilog)

Synopsys: VCS

Mentor Graphics: ModelSim

Stephen Williams: Icarus Verilog (open source)

�8

Waveform viewers

Integrated with simulator engine

Vivado Simulator, ModelSim

Or provided separately

VCS (DVE), NCsim (simvision), Icarus Verilog (gtkwave)

�9

Waveform files

VCD (Value Change Dump): standard ASCII format

VCD is accessible by all simulators and viewers, but large

Commercial simulators have their proprietary, compact formats

VPD (VCD Plus): Synopsys, SHM (Simulation History Manager): Cadence, 
WLF (Waveform Log File?): Mentor Graphics

�10

Testbench vs RTL (1)

Testbench has “flow of time”

initial statement, $finish, and `timescale

RTL has only events, but no beginning, history or end

�11

Testbench vs RTL (2)

Testbench has no port

Because testbench has everything outside RTL

Testbench is not for synthesis: all syntax in Verilog is available

System tasks and many other syntax for simulation control

�12

Writing flow of time (1)
`timescale : specify unit time and time resolution

“`timescale 1ns/1ps” is commonly used

“#1” for 1ns delay

Delays < 1ps are rounded off

#: delays evaluation or assignment (along `timescale)

�13

Writing flow of time (2)
initial: procedural assignments evaluated at t=0

Time course events with # operator

always #: procedural assignments periodically evaluated

always # (10) to be evaluated every 10 unit time

Convenient for generating clock signals

�14

Example testbench: Step 1

Clock period of 10ns:
100MHz

11ns to reset

31ns to release reset

No “unit under test” yet

`timescale 1ns/1ps

module testbench ();
 reg CLK, RST;

 initial CLK <= 1;
 always # (5) CLK <= ~CLK;

 initial begin
 RST <= 0;
 #11
 RST <= 1;
 #20
 RST <= 0;
 end
endmodule

�15

Example testbench: Step 2

With parameter

Better abstraction for
clock period

Real type to prevent loss
of digits  
(ex: Step=4 and 1.1*Step)

`timescale 1ns/1ps

module testbench ();
 reg CLK, RST;
 parameter real STEP = 10;

 initial CLK <= 1;
 always # (STEP/2) CLK <= ~CLK;

 initial begin
 RST <= 0;
 #(1.1*STEP)
 RST <= 1;
 #(2*STEP)
 RST <= 0;
 end
endmodule

�16

RTL constructs in TB

Ex: Clock counter

Good with waveform
viewer

Also convenient with
$display (shown later) and
other system tasks

 initial CLK <= 1;
 always # (STEP/2) CLK <= ~CLK;

 reg [31:0] CLK;
 always @ (posedge CLK)
 CNT <= RST ? 0 : CNT+1;

 initial begin
 RST <= 0;
 #(1.1*STEP)
 RST <= 1;
 #(2*STEP)
 RST <= 0;
 end

�17

System tasks
Command-like constructs for simulators

Handling waveform files

Displaying messages or reading/writing files in simulation

Mathematical functions in real (FP) type: $sin, $cos…

Mostly ignored by synthesis tools (or causes an error)

�18

$display, $write: stdio (1)
$display (“format”, signal1, signal2…);

printf()-like function with newline at the end ($write w/o NL)

%b: binary, %d: decimal, %h: hexadecimal, %f: real

\t and \n for tab and newline

Called within initial / always block

�19

$monitor: stdio (2)

Similar to $display, called on its change

$monitoron / $monitoroff to suspend and resume

�20

$f{display, write, monitor}

File access, almost same with standard C library

mcd = $fopen(“filename”);

$fdisplay(mcd, “format”, signal, signal…);

$fclose (mcd);

�21

Obtaining simulation time
$realtime

Returns “real” time, in second

$display(“Time = %f ”, $realtime);

$time

64bit integer, unit is `timescale

�22

Terminating simulation
$finish: terminates simulation

Some simulators displays CPU time with $finish(1) or $finish(2) 
(while others don’t support this)

In Vivado simulator, this is not mandatory because length of
simulation can be specified in GUI

Important with command-line based simulators

�23

Data conversion

$bitstoreal, $realtobits: real <-> 64bit signal in IEEE-754 standard

Convenient in debugging scientific computing applications

$itor, $rtoi: real <-> integer

$random, $sin, $cos,…: many other (mathematical) functions

�24

Saving waveform

$dumpfile(“foo.vcd”); save waveform in “foo.vcd”

$dumpvars(0); Record all signals in VCD file above

Vendor specific system tasks for vendor specific files

In Vivado simulator, no $dumpfile is required to see waveform

�25

System tasks: summary
$display, $monitor, $write, $fdisplay, $fmonitor, …

$realtime, $time

$finish

$bitstoreal, $realtobits, $itor, $rtoi, $sin, $cos, …

$dumpfile, $dumpvars

�26

Module under test (UUT)

Becomes a submodule of testbench

Input signals generated in testbench, usually as reg variable

Other system model (i.e, DRAMs) may also included as
submodules, and connected to UUT the by wires

Output signal may be connected wires, or left unconnected

�27

Simple example
`timescale 1ns/1ps

module sw_led_tb ();
 reg [3:0] SW;
 reg PUSH;
 wire [3:0] LED;

 sw_led uut (.SW(SW), .LED(LED),
 .PUSH(PUSH));

 initial begin
 SW <= 4’b0001; PUSH <= 0;
 #(10) SW <= { SW[2:0], SW[3] };
 #(10) SW <= { SW[2:0], SW[3] };
 end
endmodule

�28

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire SW1_ = ~SW[1];
 assign LED[0] = PUSH & SW[0];
 assign LED[1] = SW1_;
 assign LED[2] = SW1_ & SW[2];
 assign LED[3] = |SW;

endmodule

Observing signals

Waveform viewer: walking down module hierarchy

Can see any signal in the design,

But usually not easy

�29

Test logic in HDL

Writing test assistance logic in testbench

Adding signals such as “OK” with simple combinational logic

Using $display in some specific conditions

Testbench can access signals inside UUT

�30

Accessing signals inside
For simulation only:

i.e) uut.SW1_

Can go even deeper by:  
inst1.inst2.inst3.signal

Not good for synthesis

Not possible in VHDL

module sw_led
 (
 input [3:0] SW,
 input PUSH,
 output [3:0] LED
);

 wire SW1_ = ~SW[1];
 assign LED[0] = PUSH & SW[0];
 assign LED[1] = SW1_;
 assign LED[2] = SW1_ & SW[2];
 assign LED[3] = |SW;

endmodule

�31

Try it

Simulate (and implement next week) in Vivado

Write a testbench and RTL

A “project” must be generated first, with target device

For simulator, the target device is not essential

�32

Where to place source files

Inside project folder, in Vivado’s default

CAD generates a lot of files,  
separating your own source code is important

Project is sometime broken, or becomes a problem in reuse

�33

Typical directory organization

Separate source and project

Source code is managed
manually

Project only refers the
source files

�34

home

some_project

src corevivado sim

Your 
source

Vivado
project

IP 
cores

(for other 
 simulators)

FPGA ordering # (or model #)
Device family

Xilinx: Virtex, Kintex, Artix, Zynq, Spartan, …

Altera: Stratix, Arria, Cyclone, MAX, …

Device size and additional features

Package and speed grade

�35

Example of Ordering #

�36

XC7A100T-1CSG324C

Family: Artix-7
Speed Grade: 1

Package: CSG324
Temperature range: CommercialSize: 100T

Serial Transceiver 324 Pins
Pb-freePackage type

Hands-on

Create a Vivado project

Write a simple RTL and testbench

Then run simulation

For simpleness, source files in project directory

�37

Launch Vivado

and “Create Project”

�38

Create project (1/5)

Just click next

�39

Create project (2/5)

Name and location

Name “vivado_lab_sim”

Folder with the project
name is created

�40

Create project (3/5)

”RTL Project” is the basic

Still have no source code: 
“Do not specify sources…”

�41

Create project (4/5)

Choose device

XC7A100TCSG324-1

Enter in “Search” field, or
search by category /
family (Artix-7)

�42

Create project (5/5)

Check the settings

�43

Vivado screen

�44

Source code, etc.

Logs and messages

Design
Hierarchy

Design
Flow

“Default Layout” makes 
reset the screen

Add source code (1/4)

“Add Sources” to 
add one

�45

Add source code (2/4)

RTL corresponds to  
“Design Source”

�46

Add source code (3/4)

“Create File” because there’s
no file yet

Name “sw_led"

If there’s already source file,
do “Add Files”

�47

Add source code (4/4)

Vivado will ask the module’s
port organization

Just ignore it

�48

Add testbench

“Simulation Source” is that

Name “sw_led_test”

Rest is same to RTL

�49

Design hierarchy

Design Sources = RTL

Simulation Sources =  
Testbench + RTL

Multiple testbenches are
possible (create other simulation set

than sim_1)

�50

Example

Source code in the last slide
today

�51

sw_led

led[3]

led[2]

led[1]

led[0]

sw[3]

push

sw[2]

sw[1]

sw[0]

Design hierarchy review

RTL module under testbench

“Instance name - module
name” is shown

�52

Simulation settings

“Settings” in Flow navigator

Simulation settings → 
Simulation → runtime to 0

Default is 1000ns

�53

Run compilation

Run Simulation →  
Run Behavioral Simulation

Compiler will be launched

Post-synthesis and other
simulation is also possible

�54

Simulation

�55

(2) run simulation to the specified time

Module hierarchy Signals in  
chosen instance

(1) Drag signals to show here →

$display and other messages here

Vectors can be expanded

To run again…

�56

To add signal(s) to waveform, reset and run again

Recompile when source code is modified

Today’s source code
`timescale 1ns/1ps

module sw_led_tb ();
 reg [3:0] SW;
 reg PUSH;
 wire [3:0] LED;

 sw_led uut (.SW(SW), .LED(LED),
 .PUSH(PUSH));

 initial begin
 $monitor(“%t SW: %b, PUSH: %b”, $time, SW, PUSH);

 SW <= 4’b0000; PUSH <= 0;
 #10 SW <= 4’b0001;
 #10 PUSH <= 1;
 #10 SW <= { SW[2:0], SW[3] }; PUSH <= 0;
 #10 SW <= { SW[2:0], SW[3] };
 #10 SW <= { SW[2:0], SW[3] };
 end
endmodule

�57

module sw_led
 (
 input wire [3:0] SW,
 input wire PUSH,
 output wire [3:0] LED
);

 wire SW1_ = ~SW[1];
 assign LED[0] = PUSH & SW[0];
 assign LED[1] = SW1_;
 assign LED[2] = SW1_ & SW[2];
 assign LED[3] = |SW;

endmodule

Just copy and paste to TB + RTL file, then it’ll work

