
Reconfigurable Architecture (5)
osana@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp

Review: Testbench

`timescale, initial, always #

System tasks begins with “$”

Generate input signals to UUT

instance.signal to refer signals in UUT and its submodules

2

Review: Vivado

Create project with FPGA order #

Keep source files in separate folder to protect (but not mandatory)

Add RTL files as “Design Source”

Add testbenches as “Simulation Source”

3

Review: Vivado Simulator
Basic usage:

Set runtime to 0 in simulation settings

Advance simulation for Δt

Changes in signal list:　　 Changes in source code:

Example source codes on the web

http://mux.eee.u-ryukyu.ac.jp/lecture.html.en

4

Today’s goal
To make the board work

LED flashing, then 7 segment LED display

Write RTLs, simulate, then synthesize + place & route

Using “parameter” in simulation / implementation

Then, first assignment in this course

5

Implementation Flow
Logic synthesis

Technology mapping

Place and route

Bitstream generation

Details in hands-on

6

Today’s hands-on

Synthesize, place & route, bitstream generation and FPGA
programming

All Source files available on the web

Including the code on the slide

7

First goal of assignment

Making a stopwatch

Push buttons + 7 segment LED display controller

Decimal counter

Can be achieved using most of today’s source code

8

Push buttons

Chattering filter

Last week’s example emits 5Hz pulse while keep pushed down

Optional task in the assignment

9

7 segment LED display

Common anode

Column to illuminate: Anode=L

Segment to illuminate: Cathode=L

Quickly scanning all columns, show all figures with spectrum
(dynamic drive)

10

NeǆǇƐϰΡ FPGA BŽaƌd Refeƌence ManƵal

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 29

can be displayed on a digit by illuminating certain LED segments and leaving the others dark, as shown in Fig 17. Of

these 128 possible patterns, the ten corresponding to the decimal digits are the most useful.

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit node, but the
LED cathodes remain separate, as shown in Fig 18. The common anode signals are available as eight “digit enable”
input signals to the 8-digit display. The cathodes of similar segments on all four displays are connected into seven

circuit nodes labeled CA through CG (so, for example, the eight “D” cathodes from the eight digits are grouped
together into a single circuit node called “CD”). These seven cathode signals are available as inputs to the 8-digit

display. This signal connection scheme creates a multiplexed display, where the cathode signals are common to all

digits but they can only illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the

Nexys4 uses transistors to drive enough current into the common anode point, the anode enables are inverted.

Therefore, both the AN0..7 and the CA..G/DP signals are driven low when active.

AF

E

D

C

B

G

Common anode

Individual cathodes

DP

AN3 AN2 AN1 AN0

CA CB CC CD CE CF CG DP

Eight-digit Seven
Segment Display

AN7 AN6 AN5 AN4

CA CB CC CD CE CF CG DP

A scanning display controller circuit can be used to show an eight-digit number on this display. This circuit drives

the anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession at an

update rate that is faster than the human eye can detect. Each digit is illuminated just one-eighth of the time, but

because the eye cannot perceive the darkening of a digit before it is illuminated again, the digit appears

Figure 17. An un-illuminated seven-segment display, and nine illumination patterns corresponding to decimal digits

Figure 18. Common anode circuit node

Timescale: Human and Circuit
FPGA runs at 100MHz, but we don’t

LED at 100MHz is invisible, counters to make slower signals

24bits counter is about 6Hz: 224=16M

But simulating up to 16M is not realistic

Better if different # bits can be used to simulate / implement

11

Led flashing, again

Red figure is to be changed

23 to implement

2 to simulate: enough fast
to trace on waveform

module led_kurukuru
 (input wire CLK, RST,
 output reg [15:0] LED);

 reg [23:0] CNT;
 wire STROBE = &CNT;

 always @ (posedge CLK) begin
 if (RST) begin
 CNT <= 0;
 LED <= 16’b1000_0000_0000_0000;
 end else begin
 CNT <= CNT+1;
 if (STROBE)
 LED <= {LED[0], LED[15:1]}
 end
 end
endmodule

12

New syntax: Parameter
2 ways to declare:

in module

or before port definitions

Both requires default value

The latter can change port
width

Style 1:
module led_kurukuru
 (input wire CLK, RST,
 output reg [15:0] LED);

 parameter CounterBits = 24;
 reg [(CounterBits-1):0] CNT;
 (no changes below)

Style 2:
module led_kurukuru #
 (parameter CounterBits = 24)
 (input CLK, RST,
 output reg [15:0] LED);

 reg [(CounterBits-1):0] CNT;
 (no changes below)

13

Changing parameters

Do nothing for 24bits

Parameters can be
overwritten on instantiation

kuru2 has a 2 bit counter

Handy for faster simulation

led_kurukuru
 kuru1(.CLK(CLK), .RST(RST), .LED());

led_kurukuru　# (.CounterBits(2))
 kuru2(.CLK(CLK), .RST(RST), .LED());

14

Lab

7-seg LED

0~9 figures and their pattern

7bit (without dot) for
cathode, 0 to illuminate

Anode (column) later

15

1

2

345

6 7

0000001 1001111 0010010 0000110 1001100

0100100 0100000 0001111 0000000 0001100

NeǆǇƐϰΡ FPGA BŽaƌd Refeƌence ManƵal

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 29

can be displayed on a digit by illuminating certain LED segments and leaving the others dark, as shown in Fig 17. Of

these 128 possible patterns, the ten corresponding to the decimal digits are the most useful.

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit node, but the
LED cathodes remain separate, as shown in Fig 18. The common anode signals are available as eight “digit enable”
input signals to the 8-digit display. The cathodes of similar segments on all four displays are connected into seven

circuit nodes labeled CA through CG (so, for example, the eight “D” cathodes from the eight digits are grouped
together into a single circuit node called “CD”). These seven cathode signals are available as inputs to the 8-digit

display. This signal connection scheme creates a multiplexed display, where the cathode signals are common to all

digits but they can only illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the

Nexys4 uses transistors to drive enough current into the common anode point, the anode enables are inverted.

Therefore, both the AN0..7 and the CA..G/DP signals are driven low when active.

AF

E

D

C

B

G

Common anode

Individual cathodes

DP

AN3 AN2 AN1 AN0

CA CB CC CD CE CF CG DP

Eight-digit Seven
Segment Display

AN7 AN6 AN5 AN4

CA CB CC CD CE CF CG DP

A scanning display controller circuit can be used to show an eight-digit number on this display. This circuit drives

the anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession at an

update rate that is faster than the human eye can detect. Each digit is illuminated just one-eighth of the time, but

because the eye cannot perceive the darkening of a digit before it is illuminated again, the digit appears

Figure 17. An un-illuminated seven-segment display, and nine illumination patterns corresponding to decimal digits

Figure 18. Common anode circuit node

Single-column driver

4bit in → 7bit out
module segment_driver
 (input wire [3:0] VAL,
 output wire [6:0] CATHODE);

 assign CATHODE =
 (VAL==4’h0) ? 7’b000_0001 :
 (VAL==4’h1) ? 7’b100_1111 :
 (VAL==4’h2) ? 7’b001_0010 :
 (VAL==4’h3) ? 7’b000_0110 :
 (VAL==4’h4) ? 7’b100_1100 :
 (VAL==4’h5) ? 7’b010_0100 :
 (VAL==4’h6) ? 7’b010_0000 :
 (VAL==4’h7) ? 7’b000_1111 :
 (VAL==4’h8) ? 7’b000_0000 :
 (VAL==4’h9) ? 7’b000_1100 : 7’h0;
endmodule

16

1

2

345

6 7

0000001 1001111 0010010 0000110 1001100

0100100 0100000 0001111 0000000 0001100

Logic compression done by Vivado

Overall structure

8 columns = 32bits in

4bits for each column

Hexadecimal is also
possible with modified
segment_driver module

17

4bit x 8digits
32bit

Anode
(Column)

8bit

Cathode
(Digit)
8bit

segment_
driver

kurukuru
(8)

32 4

Make it work on FPGA board

18

Exercise
push_counter

segment_disp_ctrl

Anode
(column)

8bit

Cathode
(digit)
8bit

segment_
driver

kurukuru
(8)

32 4Coun
ter

button_filter

double_
flop

push_to
_pulse

Push
 button

Today’s Assignment
Make a stopwatch

Minimum 1/10000s

Maximum 9999.9999s

Buttons: RST and START-STOP, latter requires chattering removal

Suppose that the board’s 100MHz clock is 100% reliable

19

FPGA boards for lab/assignment

Digilent Nexys4 (discontinued)

Digilent Nexys4 DDR and Nexys A7-100T (they’re same)

Pin assignments differ between Nexys4 <-> DDR / A7

Choose the right XDC file, or you’ll break the FPGA

20

Lab 1: Flashing LEDs

Goal of the lab

Different # bits to simulate and implement

Change the parameter in simulation

Source files are available on the web

Understand Vivado usage in its implementation flow

22

Source codes
Available from http://mux.eee.u-ryukyu.ac.jp/lecture.html.en

Download and unzip lab-05.zip

Constraint: nexys4.xdc or nexys4ddr.xdc

Design Source: led_kurukuru.v

Simulation Source: led_kurukuru_test.v

23

Make a project
Extract the zip file in working directory: 05-flash-led + 05-btn-cnt

Make a Vivado project in 05-flash-led/vivado

Device: XC7A100T-1CSG324 (xc7a324tcsg324-1 in vivado)

3 source files: RTL, TB and constraint

Important: Choose the right constraint file for your board!

24

Run simulation

25

Flow Navigator
Project Manager

Simulation

RTL Analysis

Synthesis

Implementation: technology mapping + P&R

Program and Debug: Bitstream generation and programming

26

(IP Integrator is not in today’s scope)

Implementation flow
(up to down)

Project Manager
is the initial screen

Target device and project summary

On right bottom:

Messages / Log: check if you’ve got errors

Design Runs: progress of Implementation flow tasks

27

RTL Analysis

“Open Elaborated Design” to initiate

Launched automatically on synthesis and later commands

Schematic is linked to RTL, jump on right click

Not very important, just for check

28

Synthesis
“Run Synthesis” to launch

Open Synthesized Design to see reports/schematics

Only I/Os shown in device view (because the circuit
isn’t placed yet)

Resource estimate in Project Summary

Fixed after implementation, just an estimation at this point

29

Implementation

“Run Implementation” to launch

Whole circuit is placed and routed

Resource usage in “Project summary” is fixed

Timings and I/O results are very important

30

Implementation: Timing

Available after implementation

Open Implemented Design → Window → Timing

“All user specified timing constraints are met” is what we want

31

Implementation: I/O Ports

Open Implemented Design → Window → I/O Ports

All ports must be “Fixed” and their I/O Standard must be
correct

If not, the board/FPGA may be broken

32

Bitstream generation

Place & Route result to be written on an FPGA

Just click on “Generate Bitstream” to synthesize, implement
and generate bitstream

This is handy, but will be sometimes too time consuming

33

Hardware Manager

Connect the board and turn power on

“Open Target” to find the FPGA

“Program device” to program

Default filename is good in typical use case

34

Check it:

LED flashes from left to right, in different speed with simulation

Also try to change parameter for simulation

35

Lab 2:
Hexadecimal LED counter

Make a project

File → New Project

Sources in 05-btn-cnt/src

push_counter_test.v: TB,
nexys4.xdc or nexys4ddr.xdc: constraints

All others as design sources

37

push_counter
segment_disp_ctrl

Anode
(column)

8bit

Cathode
(digit)
8bit

segment_
driver

kurukuru
(8)

32 4Coun
ter

button_filter

double_
flop

push_to
_pulse

Push
 button

Organization

38

Button assignments

Left (BTNL) : ADV

Increment the counter

Center (BTNC): RST

Reset

39

Parameters

LED column switching speed (ColumnCounterBits)

10bit counter = 1/100 ms (may be too fast…)

Chattering filter counter (ButtonFilterCount)

20x106 = 1/5sec

40

Try it

Keep pressing down left button

Counter++ at 5Hz

ColumnCounterBits = 24 in push_counter.v

Slower LED column scanning, same to exercise 1

41

Assignment
Stopwatch

You can use any of today’s source codes

Deadline Nov.20

Send me zipped all source codes (*.v and *.xdc),
with a description of the design’s organization in PDF (1 or 2
pages in A4)

42

Note for remote programming
Sharing an FPGA card in the lab

Connect the card to a host

Launch “hw_server” on the host
(no full version of Vivado is required, included in Vivado Lab edition)

Choose “Remote server” on launching HW manager, “Auto
connect” is not available for remote use

43

