
Reconfigurable Architecture (6)
osana@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp

Previously in this class…

Verilog-HDL syntax and design

Circuit description, Module hiearchy, Testbench, parameter…

Design flow for simulation and implementation

�2

Productivity in Software Design

Design reuse

Once written, use again and again: write a clean code!

Share codes if everyone want it

Libraries: printf(), STL, BLAS, FFTW, OpenCV, …

�3

Examples of Libraries in Software

Mathematics: fast, optimized implementations of frequently-used algorithms

BLAS (Basic Linear Algebra Subprograms)

FFTW (Fastest Fourier Transform in the West)

Image processing: read/write various image formats, or do transformations

OpenJPEG, libPNG, ImageMagick, OpenCV, …

�4

Same in Hardware Design

Example of complicated stuff: Floating-point arithmetics

1 bit sign x 52bit fraction x 2(11bit exponent)

Fraction is always 1.xxxx (must be adjusted with exponent)

Exponent biased by 1023 (exponent=1023 means x20)

Fraction and exponent must be calculated separately and together :(

Never want to implement FP operators again and again…

�5

Software vs Hardware

Connecting software components are simple

Argument, function call and return value

In hardware, procedure and timing is crucial

Protocol in time-space is important

Verification is difficult and time consuming

�6

Design easier with IP cores

IP (Intellectual Property) cores: functional blocks

Blackbox modules (sometimes source code is provided, but usually not)

Simulation with IP cores is possible

Interface specification is important and well documented

Many IP core comes with user-configurable parameters

�7

Hard IP vs Soft IP

Soft IP: Constructed on FPGA’s logic cells, as our HDL is mapped

Flexible in number, location and functionality

May be a pressure on logic utilization

Hard IP: “Ready-made” function block on FPGA chip

Memory blocks, DSP arithmetics, Ethernet MAC, ARM processor, PCIe, …

Less flexible and number is limited, but very fast

�8

Where to IP cores

In IP management tools of design suites

Vivado has IP Integrator: supports both free and charged IP cores

Downloadable RTLs: OpenCores.org and many other per-project sites

Downloadable RTL generator: FloPoCo (Floating point tools) and similar tools

�9

IP cores: pros and cons

Pros: Designs made easier

Usually faster and/or smaller than hand-written HDL designs

Cons: Designs made harder

IP core behavior must be considered in HDL-written modules

May be a problem when migrating to ASICs or other FPGAs

�10

IP cores vs Designers

Things to know

Interface, or module ports: How each port signals acts

Many IP cores have some standard compliant interface ports

Parameters: what is configurable in the IP core

�11

Interface standards

Connect IP cores directly, like drawing block diagram

Requires common interface → standards are defined

AXI4 (Xilinx / ARM), Avalon (Intel), Wishbone (OpenCores)

Block-diagram based design tools

IP Integrator (Xilinx), Qsys (Intel)

�12

What is Interface standard?

How to connect sender and receiver

“Are you ready?” → “Yes / Wait!”

“Here data is” → “OK / Wait!”

“Over”

�13

Sender Receiver
So, How?

Well-used interface types

Memory type

Access with address to read/write

Random access order is possible for both reads and writes

Stream type

Data transfer in single direction

Read in written order only

�14

Block RAM interface

Write data: same time with address

Read data: 1 clock later than address

�15

WEN

ADDR

DIN

DOUT

CLK

1 2 3

11 12 13

3 2 1

13 12 11

Simple stream transfer

Both synchronous to same clock

Data is free-running

with validity signal

�16

Sender Receiver

Data

Valid

Data

Valid

Sender/receiver handshake

Check status each other

VALID + READY

Next data sent when both are
ready to send/receive

�17

READY
VALID

Data

Sender Receiver

Data

VALID

READY

Interface variations

Both memory type and stream type has many options

AXI4 has both types and many options

Can be connected together, though

Even memory ←→ stream connection is possible with adapter IPs

�18

Typical IP cores for FPGAs

On-chip memory: BlockRAM or FIFOs

Clock managers: to generate clock signals with different frequency or phase

Floating-Point operators

PCI Express, Ethernet and many other standard interfaces

�19

Today’s exercise

Using clock manager (CMT: Clock Management Tile)

LED flashing at 100MHz and 150MHz

BlockRAM

Stopwatch version 2 with lap time feature

�20

CMT (6 available on Artix-7 100)

PLL (Phase Locked Loop) + DLL (Delay Locked Loop)

PLL uses VCO (voltage controlled oscillator), DLL uses delay lines instead

Features:

Phase shift of 90°, 180° and 270°

Frequency generation by double, or with multipliers and dividers

Multiply by n / divide by m of input frequency

�21

Block RAM (135 available on Artix-7 100)

36kb dual port memory blocks, distributed all over the FPGA chip

Can be accessed individually or in parallel, provides a great bandwidth

Configurable width x depth of 1x32k, 2x16k, 4x8k, 9x4k, 18x2k, 36x1k

Also available as 2 independent 18kb RAM blocks

Or even as a large RAM by concatenating

�22

Exercise1: LED flashing with CMT

�23

led_with_cmt

kurukuru

kurukuru

LED[15:0]

LED[7:0]

LED[7:0]RST

CLK
100MHz

CLK 150MHz

RST

CMT

RST requires some hack: details later

Exercise 1 HOWTO

Design sources, constraints, testbench are in ip-lab/lab1/src

But there’s no CMT

Open IP Catalog after all sources are set in project

�24

IP Catalog

List of available IP cores

Launch Clocking Wizard to use CMT

FPGA Features & Design → 
Clocking → Clocking Wizard

�25

Clocking Wizard (1/2)

Set the module name

Default isn’t good to avoid 
unexpected overwrite…!

Set the input frequency  
(100MHz)

�26

Clocking Wizard (2/2)

Set output frequency

“Requested” and “Actual”  
are sometimes different

Because multiplier / divider  
has some restriction

ex) Try 123.0MHz

�27

Running simulation

DLL locks at 2.7us

LOCKED goes high

This must be added to 
RST condition

Check source code for 
detail

�28

To instantiate generate core…

The module’s port definition is necessary

Opening the generator GUI is not very effective

Find the core in “IP sources”, then there’s  
“Implementation template “

.veo is the template for Verilog

�29

Where’s generated cores?

project_1/project_1.srcs/sources_1/ip/cmt_100_150/

Enough good for exercise or one-time test project

Not good when migrating a test to large, complete project

For large projects, managing IP cores separately is good

�30

IP Location: manage cores outside

“Manage IP” in Vivado startup screen

Make a IP Location to manage 
generated IP cores outside an RTL  
project

�31

Looks very similar to RTL project

�32To use the core, add generated “.xci” or “.xcix” files to RTL project

Exercise 2: Using Block RAMs

Make an IP location

lab2/core

Generate a Block RAM (32bit x 1024・True dual port)

�33

Block Memory Generator

Basic Elements→ 
Memory Elements

Block and distributed memory

Hard IP (Block) or LUTs (distributed)

Block Memory for today

�34

Basic

Component Name:  
ram36x1024

Memory Type:  
True Dual Port RAM

�35

Port A Options

Read / Write Width: 32

Write Depth: 1024

�36

Port B Options

OK if Read/Write are 32bit

�37

Assignment #2

12/3: deadline for stopwatch

Start/Stop and Reset button

12/17: deadline for stopwatch 2.0

Start/Stop, Reset and Lap

Up to 1000 laps, any usage / funtions of buttons and switches are OK

�38

おまけ: Block RAM のアクセス

�39

EN
WEN

ADDR
DIN

DOUT

CLK

1 2 3

11 12 13
3 2 1

13 12 11

書き込みは ADDR + WEN + DIN が同時、 
読み出しは DOUT が1サイクル遅れます。

DOUT は実際にはずっと何かしら出ています。

One more thing on Block RAM

“EN (enable)” must kept high while Block RAM is active

Actually, DOUT is also active while the RAM is being written

�40

WEN
ADDR

DIN
DOUT

CLK

1 2 3

11 12 13
3 2 1

13 12 11

EN

