Reconfigurable Architecture (6)

osana(@eee.u-ryukyu.ac.jp

mailto:osana@eee.u-ryukyu.ac.jp

Previously in this class...

Verilog-HDL syntax and design
Circuit description, Module hiearchy, Testbench, parameter...

Design flow for simulation and implementation

Productivity in Software Design

Design reuse
Once written, use again and again: write a clean code!

Share codes if everyone want it

Libraries: printf(), STL, BLAS, FFTVV, OpenCy, ...

Examples of Libraries in Software

Mathematics: fast, optimized implementations of frequently-used algorithms
BLAS (Basic Linear Algebra Subprograms)
FFTW (Fastest Fourier Transform in the VWest)

Image processing: read/write various image formats, or do transformations

Open]PEG, libPNG, ImageMagick, OpenCYV, ...

Same in Hardware Design

Example of complicated stuff: Floating-point arithmetics
| bit sign x 52bit fraction x 2(l1bit exponent)
Fraction is always |.XXXX (must be adjusted with exponent)
Exponent biased by 1023 (exponent=1023 means x2°)
Fraction and exponent must be calculated separately and together :(

Never want to implement FP operators again and again...

Software vs Hardware

Connecting software components are simple
Argument, function call and return value
In hardware, procedure and timing is crucial

Protocol in time-space is important

Verification is difficult and time consuming

Design easier with IP cores

IP (Intellectual Property) cores. funCt|Ona| bIOCkS

Blackbox modules (sometimes source code is provided, but usually not)

Simulation with IP cores is possible
Interface specification is important and well documented

Many IP core comes with user=-configurable parameters

Hard IP vs Soft IP

Soft IP: Constructed on FPGA’s logic cells, as our HDL is mapped
Flexible in number, location and functionality
May be a pressure on logic utilization
Hard IP: “Ready-made” function block on FPGA chip
Memory blocks, DSP arithmetics, Ethernet MAC, ARM processor, PCle, ...

Less flexible and number is limited, but very fast

Where to IP cores

In IP management tools of design suites
Vivado has IP Integrator: supports both free and charged IP cores
Downloadable RTLs: OpenCores.org and many other per-project sites

Downloadable RTL generator: FloPoCo (Floating point tools) and similar tools

IP cores: pros and cons

Pros: Designs made easier

Usually faster and/or smaller than hand-written HDL designs
Cons: Designs made harder

IP core behavior must be considered in HDL-written modules

May be a problem when migrating to ASICs or other FPGAs

10

IP cores vs Designers

Things to know
Interface, or module ports: How each port signals acts
Many IP cores have some standard compliant interface ports

Parameters: what is configurable in the IP core

11

Interface standards

Connect IP cores directly, like drawing block diagram

Requires common interface — standards are defined
AXI14 (Xilinx / ARM),Avalon (Intel),Wishbone (OpenCores)
Block-diagram based design tools

IP Integrator (Xilinx), Qsys (Intel)

12

What is Interface standard?

How to connect sender and receiver
“Are you ready?” — “Yes / Wait!”

“Here data is” — “OK / Wait!”

“Over”’

Sender

So, How!

Receiver

13

Well-used interface types

Memory type

Access with address to read/write

Random access order is possible for both reads and writes
Stream type

Data transfer in single direction

Read in written order only

14

Block RAM interface

CLK
WEN J u |
ADDR ({2 /3) (320 1)
DIN C—{ 1213)
DOUT (13512011

Write data: same time with address

Read data: | clock later than address

15

Simple stream transfer

Data |
Sender Valid Receiver
Both synchronous to same clock >
Data is free-running
NN S S I S I S

ith validity signal
with validity signa Vald _ m——mm—————1

Data ——__X_X_X_+—

Sender/receiver handshake

VALID
Sender READY Receiver
Check status each other <
Data
VALID + READY —_—
Next data sent when both are S S [y S Sy Ny S Iy

ready to send/receive

READY ___| I
VALD __ T L _I

Daa —(____ X X X}

17

Interface variations

Both memory type and stream type has many options
AXI4 has both types and many options

Can be connected together, though

Even memory < — stream connection is possible with adapter IPs

18

Typical IP cores for FPGAs

On-chip memory: BlockRAM or FIFOs

Clock managers: to generate clock signals with different frequency or phase

Floating-Point operators

PCl Express, Ethernet and many other standard interfaces

19

Today’s exercise

Using clock manager (CMT: Clock Management Tile)

LED flashing at |00MHz and 150MHz

BlockRAM

Stopwatch version 2 with lap time feature

20

CMT (6 available on Artix-7 100)

PLL (Phase Locked Loop) + DLL (Delay Locked Loop)

PLL uses VCO (voltage controlled oscillator)y DLL uses delay lines instead
Features:

Phase shift of 90°, 180° and 270°

Frequency generation by double, or with multipliers and dividers

Multiply by n / divide by m of input frequency

21

Block RAM (135 available on Artix-7 100)

36kb dual port memory blocks, distributed all over the FPGA chip

Can be accessed individually or in parallel, provides a great bandwidth

Configurable width x depth of 1x32k, 2x 16k, 4x8k, 9x4k, 18x2k, 36x |k

Also available as 2 independent |8kb RAM blocks

Or even as a large RAM by concatenating

22

Exercisel: LED flashing with CMT

CLK

|00MHz LED[7:0]
kurukuru

LED[15:0]

CMT | CLK 150MHz
.......... " kurukuru

llllllllllllllllllllllllllllll

RST requires some hack: details later

led with cmt

Exercise | HOWTO

Design sources, constraints, testbench are in ip-lab/lab|/src

Flow Nawvigator <K

But there’s no CMT o T

4 Project Manager

Open IP Catalog after all sources are set in project &3 Project Settings
&% Add Sources

' Language Templates

. F IP Catalog

a4 |P Integrator

" Create Block Design

24

IP Catalog

"% Project Summary X iF IP Catalog X
*l search: [0

Name o1 AX14 Status License W LINY

== Alliance Partners
o= Automotive & Industrial
== AX| Infrastructure
O= = BaselP
= Basic Elements
O= = Communication & Networking
o= Debug & Yerification
©=— Digital Signal Processing
= Embedded Processing
21 FPCA Features and Design
& Clocking
|—§= Clocking Wizard Production Included ¥ilin¥.com. ..
o= 10 Interfaces

| Soft Error Mitigation

[System Management

= XADC
o=~ Math Functions

> Memories & Storage Elements

> Standard Bus Interfaces

= Yideo & Image Processing

* List of available IP cores

B & | & & B L7 % BB

Details

Name: Clocking Wizard

Version: 5.1 (Rev. 4)

Interfaces: AxI4

Description: The Clocking Wizard creates an HDL file {¥erilog or ¥HDL) that contains a clocking circuit custom

Status: Production

liranca: Inrclndar

Clocking Wizard (1/2)

O %\ Customize IP

Clocking Wizard (5.1)

ﬁfl Documentation) IP Location L Switch to Defaults

¢ I EEE I E E E S S S S E SN EEEEEEEEEEEEE)

&
IP Symbol Resource » Component Name |cmt_100_150 :
4 EEEEEEEEEER

S Set th e m O d u I e n am e ¥ Show disabled ports Clocking Options Output Clocks MMCM Settings Port Renaming Summary

g e e

* Default isn’t good to avoid |
unexpected overwrite...! My Sy Mo

clk_aull =

* Set the input frequency e Gosk s
(100MHZz)

-yl

Primitive |_
@® MMCM| O PLL
Phase Alighment (] Spread Spectrum O Minimize Output Jitter
(] Dynamic Reconfig [_| Dynamic Phase Shift Rl e it s il
Input Clock Information
______________ | Jitter Options | Input Jitter
. 1000 - 800.000 Ul ~ [0.010
.III.II.II.I CEEEEEEEEEEEEEEER D -
[] Secondary 0.010
] | D

26

Clocking Wizard (2/2)

* Set output frequency

* “Requested” and “Actual”
are sometimes different

+ Because multiplier / divider
has some restriction

* ex) Try 123.0MHz

@]

Clocking Wizard (5.1)

ﬁfl Documentation) IP Location L Switch to Defaults

N\ Customize IP

IP Symbol Resource Component Name |cmt_100_150
¥l Show disabled ports Clocking Options Output Clocks MMCM Settings Port Renaming Summary
= 4} The phase is calculated relative to the active input clock. |_
”4}_‘ ‘-IllIllIllllllllllllllllllllllllllll.
e & Output Clock Output Freq (MH2) sPhase (degrees) Duty Cy
|| L]
1|5 n Requested Actual Requested Actual Reques
|
I : V] clk_outl 150.000 150.000 E0.000 0.000 50.000
l'lllllllllll llllllllllll‘
—lk_inl []clk_out2 100.000 0.000 50.000
i 100.000 0.000 50.000
clk_autlf 100.000 0.000 50.000
100.000 0.000 50.000
100.000 0.000 50.000
100.000 0.000 50.000
Clocking Feedback
lacked =
Source .
Output Clock Sequence Number)
® Automatic Control On-Chip
1
1 O Automatic Control Off-Chip
—asel _
1 O User-Controlled On-Chip
1 _
- () User-Controlled Off-Chip
<] l [»]

Lok |

27

Running simulation

led_Kurukuru_test_behav.wcfg X

“’J_ 2,727.500 ns

& Name Value

%3]
2]

% [1)
% [0]

Check source code for S

% CLK150

DLL locks at 2.7us B z i M L S
i o " FED[15:0] 1000000010000000 | A0... a0 o 0. o Y E 0O 0
- . o
LOCKED goes high] o : I
q ; -_.‘_l
o : I e —
¥ [9] 0

. e : I R —
This must be added to v ! o . E—
. oL ; H I
RST condition 1 [2 ==F
o B —
: B

0.0

detail

o R DO K
E—
-
—
B!
E—
—
-
N

1l

To instantiate generate core...

The module’s port definition is necessary
Opening the generator GUI is not very effective

Find the core in “IP sources”, then there’s
“Implementation template

.veo is the template for Verilog

Sources

Q| =
P (3

{H
-

Simulation (1

Change Log (]
s cmt 100 150.dcp
® cmt 100 150 sim_netlist.vhdl
® ocmt 100 150 sim_netlist.v
® cmt 100 150 stub.vhdl
® ocmt 100 150 stub.v

Hierarchy lerar‘le-: Compil

29

Where’s generated cores!

project_|/project_|.srcs/sources |/ip/cmt_ 100 |50/
Enough good for exercise or one-time test project
Not good when migrating a test to large, complete project

For large projects, managing IP cores separately is good

30

IP Location: manage cores outside

O O \ Vivado 2014.3.1

File Flow Tools Window Help

VIVADO! . £ XILINX

“Manage IP” in Vivado startup screen p Py ™

Make a IP Location to manage woninan
generated IP cores outside an RTL ' &
P rOj eCt 1F New IP Location

Vivado @ IP AS0OTEMigR e CTEALT IP Z{ER. AZXSVIALET,

31

Looks very similar to RTL project

Manage IP Settings
Set options for creating and generating IP.

"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllll.

X/ New IP Location

Part: @ xc7alo0tcsg324-1

Target language: Verilog

e"EEREN

Target simulator: |Vivado Simulator

Simulator language: |(Mixed

L 2)
IP location: " ghome‘osanagworkgreconf-classi1110ic0re || |l

Project Manager - xc7al00tcsg324-1
|Sources - 0O X |
f & wat|
*
a
]
]
]
Y |n
v
v
IP Sources
' Design Runs

[NON | '\ Manage IP - [f/home/osana/work/reconf-class/1110/core] - Vivado 2014.3.1

File Edit Tools Window Layout Yiew Help

[Q~ Search commands

d’@\mu‘. X‘ﬁ %|@%DefaultLawut

| HeN|®

i{F IP Catalog X

* search: (O~

Name

Ax14

= Alliance Parthers

O= = Automotive & Industrial

== AX| Infrastructure

o= BaselP

= Basic Elements

== Communication & Networking
== Debug & Yerification

@=|— Digital Signal Processing

(4 | T ‘

Details

Select an [P to see details

5| & B | F %6 H|

— 0O e X

| constraints | wwns | Tns | wHS | THS | TPwS | Failed Routes | LT | FF | BE

Mext > || Finish

Cancel

/.

Kl T '
= Tcl Console 0 Messages 3 Design Runs

Exercise 2: Using Block RAMs

Make an IP location

lab2/core

Generate a Block RAM (32bit x 1024 * True dual port)

lock Memory Generator

Basic Elements—
Memory Elements

Block and distributed memory
Hard IP @iock) or LUTS (distributed)

Block Memory for today

O O X/ Manage IP - [/home/osana/work/reconf-class/1110/core] - Vivado 2014.3.1
File Edit Tools Window Layout Yiew Help |
a3 o & % | 15 |22 pefaun Layout v | %)
Project Manager - xc7al00tcsg324-1 X
sources — 0O X {F IP Catalog X O X
Q = o | =
\ L = a7 || & 2l search: |
i Alliance Partners («]
e Automotive & Industrial
NS AX| Infrastructure
. BaselP
4 Basic Elements
ArCcumulators
¢ Counters L3
—iF DSP48 Macro
@ Memory Elements
iF Block Memory Generator AX14
1F Distributed Memory Generator
@ @=— Registers, Shifters & Pipelining B
& [« [
— Details
Name: Block Memory Generator lL:JI
Yersion: 8.2 (Rev. 2)
_Interfaces: AX14 B
IP Sources Kl |]
Design Runs — 0O 2 X
Q Name | Constraints | wWNS | TNS | wHS | THS | TPWS | Failed Routes | LUT | FF | BRAN

@ Out-of-Context Module R...
@+ blk_mem_gen_0_synth_1 blk_mem_ge...

A B

[

2 Tcl Console Messages 3> Design Runs

0.00 0.00 0.

® OO Customize IP

Block Memory Generator (8.2) '\
i Documentation [IP Location €3 Switch to Defaults
‘-IIllIllIllIllIllllllllllllllllllll.‘
B T — ' '
IP Symbol [Power Estimation \ » Component Name |ram36x1024 -
[) ®ann [EERRERERREERNEREEREEREEREE RN N RN N R G —
¥ Show disabled ports ~ Basic Port AOptions Port B Options Other Options Summary
(]
o Interface Type |Native = [] Generate address interface with 32 hits
* OIllponent allle. .‘llIlllllllllllllllllll...
a
"MemoryType True Dual Port RAM v | * []JCommon Clock

.lllIIIIIIIIIIIIIIIIIIIIII’

ram36x1024

ECC Type No ECC

[Error Injection Pins [Single Bit Error Injection

soke s Write Enahble

doke e

lqecesoke s rRaddecc |90y

lqecedoka e 5_axl_soke D Byte Write Enahble

cColiRce s_axl_doke s

HAL] s_axl rddecc |9y

5_acly Byte Size (bits) &
5_aresera

5_axl_lyecesoke e

5_axl_lyecedoke o

Algorithm Options

Defines the algorithm used to concatenate the block RAM primitives.
Refer datasheet for more information.

Algorithm [Minimum Area ¥

Primitive | Sku2

K —

cancel |
y

Port A Options

® OO Customize IP

Block Memory Generator (8.2) '\

i Documentation [IP Location €3 Switch to Defaults

| " IP Symbol "':'Power Estimation Component Name |ram36x1024
(¥ Show disabled ports - "'Bas»ir " Port A Options "'"'Port B Options ‘A'HOther Options 'E’JSummary:
(4]
Memory Size
“......................
= Write Width |32 l.Range: 1 to 4608 (hits)

* Read /Write Width: 32 é:j::::::: I::)24 L JRange: 210 262144

Read Depth (1024

Operating Mode |Write First ¥ Enable Port Type |Use ENA Pin

sokeve
=iy Port A Optional Output Registers
lqecesoke e claddeecc |98y
Iqecedoke o s_axl_soke |
ccoliRee s.axldoke s V] Primitives Output Register [] Core Qutput Register
H s_axl_ cdaddecc |90y
s_acly
P [J SoftECC Input Register [[] REGCEA Pin
!_JXLIP(QCUDIQ "
s_axl_mectdolte "

Port A Output Reset Options

[] RSTA Pin (set/reset pin) Output Reset Value (Hex) |0

[] Reset Memory Latch Reset Priority |CE (Latch or Register Enahle)

D] E2 [K e |

cancel |
y

Port B Options

® OO Customize IP
Block Memory Generator (8.2) '\
i Documentation [IP Location €3 Switch to Defaults
| " IP Symbol '[:'Power Estimation \ Component Name |ram36x1024
¥ show disabled ports ‘Basic Port AOptions Port B Options Other Options \ summary
(4]
Memory Size

‘-IIIIIIIIIIIIIIIIIIII.

~ irite Width |32 v

s Read Width |32 v
'.....................l’

Write Depth : 1024
Read Depth : 1024

Qaunnn?®

QOperating Mode |Write First ¥ Enable Port Type |Use ENB Pin

soke s Port B Optional Output Registers

doke ¢
lqecesoke s rdaddeece |95y
necedorere s_axLsoker [V Primitives Output Register [Core Qutput Register
cCpliRee s_axl_doke v
H) s_axl_ cddecc |96y
5_acly (] SoftECC QOutput Register [[] REGCERB Pin
5. A RIRA
s _axl_lqeccsoke s
s _axl_lqecedoke e

Port B Output Reset Options

[] RSTB Pin (set/reset pin) Output Reset Value {Hex) |0

] Reset Memony Latch Reset Priority |CE {Latch or Register Enable)

K [—

cancel |
y

Assighment #2

12/3: deadline for stopwatch
Start/Stop and Reset button
12/17: deadline for stopwatch 2.0

Start/Stop, Reset and Lap

Up to 1000 laps, any usage / funtions of buttons and switches are OK

38

HZE(T:Block RAM D77Vt R

CLK
EN
WEN | | s
ADDR ——(1)2 A8)J——— 8 {2\ 1)
oN —(1—{12)(7®)
DOUT (1812)11)

i

DOUT [FZEBRICIFT o &MU S5t

1 C L)

= Z 1A A3 ADDR + WEN + DIN H3[E] .
oA U ld DOUT M1 7)LIEN F

EE

Qu

One more thing on Block RAM

CLK
EN
WEN | u -
ADDR L)—2X3) (3 N2 X 1)
DIN (1) <|2><I3>
DOUT CI3X 12 X101)

“EN (enable)” must kept high while Block RAM is active

Actually, DOUT is also active while the RAM is being written

40

