
Reconfigurable Architecture (7)
osana@eee.u-ryukyu.ac.jp

Today’s contents

Previously in this class:

HDL design: Combinational, Sequential + Testbench + Simulation / Implement

IP-based design: IP cores in RTL design

Today: RTL in IP-based design

Designing processor-based systems

�2

Processor-based systems

Has a microprocessor as the “core” of system

Softcore processor is an IP core of FPGA

Configurable along users’ requirement

Some FPGAs have hardcore processor (ARM or PowerPC)

Other IP cores and RTL modules are the peripherals

�3

Xilinx MicroBlaze Processor

Highly customizable, 32-bit RISC microprocessor

Area Optimized ←→ Performance Optimized + many options:

Floating point units, Integer multiplier, etc.

Instruction / Data caches for external DDR memory usages

Exceptions and MMU (memory management unit) for Linux and other OS

Various AXI peripherals

�4

FPGA

Simplest processor system

�5

CPU Memory

UART PC
USB cable

Hands-on: “Hello World” from FPGA

Using Xilinx’s MicroBlaze processor

With FPGA’s internal BlockRAM as the main memory

Xilinx’s UART-Lite core as the console device

�6

Setting up

Create a Vivado RTL project

Device: xc7a325tcsg-1

“Create Block Design” → “design_1”

Empty block diagram is open

�7

Add processor core

“+” to add IP core

Find “MicroBlaze”

Run block automation

Change Local memory size and
clock connection

�8

Reset settings

“Connection automation” then set
reset polarity

And you’re done for base system
with CPU and BRAM

�9

See inside RAM

Expand the local memory

(LMB + BRAM controller) x2

ILMB (Instruction LMB)

DLMB (Data LMB)

Share the same dual-port BRAM

�10

Add UART

Add “AXI Uartlite” core

Connect by automation

Check the uartlite_0 core

�11

Validate the design

Let Vivado check design integrity

�12

Your system is ready!

�13

MicroBlaze CPU core RAMDebug module
to load programs

Reset module UART coreAXI interconnect
to connect peripherals

See the address space

Window → Address Editor

Address map is displayed

RAM at 0x0000_0000

UART at 0x4060_0000

Don’t modify for now

�14

Implementing the system

2 problems to make the system work

No top-level module yet

No constraint file yet

Prepare them and just generate bitstream

�15

Generate top module

Right-click on “design_1” and
create HDL wrapper

Wrapper module for block
design is generated

This will be the top module for
today (or, may be your submodule)

�16

Set the constraints

set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports Clk]
create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports Clk]

Reset on Button C
set_property -dict { PACKAGE_PIN E16 IOSTANDARD LVCMOS33 } [get_ports reset_rtl_0]
set_property -dict { PACKAGE_PIN C4 IOSTANDARD LVCMOS33 } [get_ports uart_rtl_0_rxd]
set_property -dict { PACKAGE_PIN D4 IOSTANDARD LVCMOS33 } [get_ports uart_rtl_0_txd]

�17

See the wrapper module

Get ready for SDK (Software Development Kit)

File → Export → Export Hardware

“Include bitstream” is required

Address map + bitstream is handed to SDK

Then, File → Launch SDK to launch SDK

�18

Hardware definitions in SDK

HDF (hardware definitions) is
automatically loaded

Updated by “Export hardware” 
in Vivado

Update required when bitstream
or the CPU’s address map had
changed

�19

Create Application Project

File → New → 
Application Project

Name project

Choose template 
“Hello World”

�20

Application + BSP generated

Application Project: hello

“helloworld.c” is the application code

“platform.*” is hardware support code (don’t modify)

Board Support Package: hello_bsp

Minimum libraries as device drivers

�21

Open serial console

Communicate with UART on FPGA

SDK terminal → +

Choose serial device (COMx)

Baud rate is 9600 
(settings in block design → UARTLite core)

�22

Program FPGA

Xilinx → Program FPGA

Change “ELF/MEM file” from
“bootloop” to “hello.elf”

Then click “Program” to launch

FPGA is programmed with the
bitstream + hello.elf

Check SDK terminal

�23

hello.elf (found in dropdown menu)

Modify program and check size

Modify program, Ctrl+B to build

SDK terminal can send text

Multiple “Hello world” appears

Check the code size

24,560 bytes used in 64kB RAM

src/helloworld.c:

while(1){
 print("Hello World¥n¥r");
 getchar();
}

Debug/hello.elf.size:
 text data bss dec hex filename
 20076 1308 3176 24560 5ff0 hello.elf

�24

Code size in embedded programming

Code + variable size must not exceed the memory size (64kB for this time)

Standard library functions (such as printf() and scanf()) is usually too large

See Xilinx Standalone Library Documentation:  
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/oslib_rm.pdf

Document is very long, but first “Xilinx Standard C libraries” is sufficient

printf() is larger than 64kB!

Instead, print(), printnum() and xil_printf() is provided

�25

Next week:

Integrating HDL peripherals with MicroBlaze processor

+ more AXI peripherals

�26

