
Reconfigurable Architecture (9)
High-level synthesis (1 of 2)

Today

HLS: High-Level Synthesis technology

Generate RTL from C, C++, Java, System C or other languages

OpenCL (mostly used in GPUs) is also supported

�2

HLS tools
Without particular targets

Impulse C (Impulse), Cyber WorkBench (NEC)

For specific device technology

Vivado HLS (Xilinx)

For specific platform

Carte (SRC: C/Fortran), MaxCompiler (Maxeler: Java)

�3

Better in HLS:

Implementing complex algorithms: hard to implement with HDLs

Describe and verify as a software

Debug without HDL simulator but with compilers: very fast

Easy to modify / update algorithm

Easy to try design trade-offs: i.e, area vs speed

�4

Popular HLS targets

Financial applications: stock and FX predictions

Signal processing: Digital filter implementations in HLS

Also effective for image processing, especially real-time ones

Matlab is also a popular design entry

�5

HLS is not a magic bullet

Not always fast, may result in a (very) large circuit

Tuning is crucial for HLS designs

Not good at clock-accurate stuff as HDL

HDL is better for external interface logic

HLS is suitable for internal, complicated algorithms

�6

void foo(int in[3],
 char a, char b, char c,
 int out[3]) {

 int x, y;
 for(int i = 0; i < 3; i++) {
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

How HLS tools work

Extract control flow

Branches and loops

Then, extract data flow

For each BBs (basic blocks)

Perform schedule and bind

�7

Xilinx UG902 (v2014.1)

Loop
Basic Block

Data flow extraction

int foo(char x, char a, 
 char b, char c){
 char y;
 y = x*a+b+c;
 return y;
}

�8

Xilinx UG902 (v2014.1)

x a b c

y

+

*

+

+

Scheduling and binding

�9

*

+

x
a
b
c

y

DSP48

ADDSUB

ADDSUB

ADDSUBDSP48

Scheduling

Initial Binding

Target Binding

Interface synthesis
Scalar arguments:
synthesized as I/O ports

Array arguments: basically
synthesized as BlockRAM I/Fs

Communication via RAMs

Details later

void foo(int in[3],
 char a, char b, char c,
 int out[3]) {

 int x, y;
 for(int i = 0; i < 3; i++) {
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

�10

Xilinx UG902 (v2014.1)

Loop optimizations

Separate constant value
calculations

Do only once before the
loop begins

void foo(int in[3],
 char a, char b, char c,
 int out[3]) {

 int x, y;
 for(int i = 0; i < 3; i++) {
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

�11

Xilinx UG902 (v2014.1)

b+c

Iteration 1

�12

+b
c

*
a

+

in
addr

out
addr

in out

x

+ +

①: Preprocess

② ③

④

b+c

Iteration 2 and later

�13

+b
c

*
a

+

in
addr

out
addr

in out

x

+ +

② ③

④

Control State

b+c
i++

a*x + (b+c)
out_data_we

Control FSM is automatically generated

C3C2C1C3C2C1C0

in[0] in[1]

0 1

b+c

in_addr
in_data_out in[0] in[1]

x reg in[0] in[1]

a * in[0] a * in[1]

State

�14

Control flow and FSM

Control flow = FSM states

I/O and branches changes state of the FSM

In other words, data path is switched by the FSM

FSM state may not change every clock cycle: FSM may stay in a
specific state (i.e., “Idle” state) for a long time

�15

Interface synthesis

C functions → How about the module ports in synthesized RTL?

In C, functions have 3 ways to perform I/O

Function arguments

Return valves

OS I/Os: printf(), gettimeofday() and others (not synthesizable)

�16

Arguments, Return values and
pointers

Arguments are basically input

Pointer arguments can be
output

Return values are always output

int foo(int a, int b, int *c){
 int d;

 *c = a + b + *c;
 d = a + b;

 return d;
}

�17

Input

Output

I/O

Basic module interface

�18

ap_idle
ap_start
ap_done

ap_return
c_o

a
b
c_i

c_o_ap_vld

a

b

c_i

ap_return

c_o

c_o_ap_valid

ap_idle

ap_start

ap_done

High when ready (after reset)

Start while idle

Input signals are captured 
in the next cycle to start signal

Pointer outputs can occur
anytime, accompanied with “valid”

Return values with “done”

BRAM I/F example
BRAM I/F synthesized for array argument

BRAM is not included internally

Write before ap_start,  
Read after ap_done

BRAMs are placed externally, this gives 
a great flexibility

�19

ap_idle
ap_start
ap_done

in_a
in_dout

a
b
c

out_a
out_wen
out_din

out

in

More on Interface Synthesis

 Variety of interfaces are supported to meet various demands

Synthesized along coding style and directives

Directives given by #pragma or separate directive files

Refer tool’s documentation: User Guide 902 for Vivado HLS

�20

Optimization
In RTL design, resulting hardware has less variations

Because RTL description gives a rigid, clock-accurate model

RTL generation in HDL has much more design options

Many possible designs from the same source code

This is good for fine-tuning of the design, but there’s no “one-
click solution”

�21

Performance metrics

2 major concerns: area and speed

Area: How many LUTs, FFs and other blocks are used

Latency: clock cycles required between input and output

Interval: clock cycles required between input and next input

�22�22

Loop Pipelining

②③④ in the previous example

On ③, ② for next iteration is possible

No change in latency

Throughput improved

Effective with longer latency

�23�23

*
+

in
addr

out
addr

in out

x

+

② ③

④

Duplication

BRAMs are dual-ported

2x pipelines gives 2x performance

Of course, 2x area is required

�24�24

in out

*
+

x

*
+

x

Source of difficulties

Dependencies between loop iterations

This is really problematic: but appears in today’s hands-on…

Non-constant number of loop iterations

Without these problems, loop are pipelineable easily

�25

Optimization directive: pragma

pragma in source files

Safely ignored by
(software) compilers

Good for making many
small tests

void foo (int in[3],
 char a, char b, char c,
 int out[3]){
#pragma HLS RESOURCE variable=in core=RAM_1P

 int x, y;
 for (int i=0; i<3; i++){
#pragma HLS PIPELINE
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

�26

Optimization directive: directive file

Using separate directive file

Only labels in source code

Multiple directive files for
multiple optimization
strategies is possible

void foo (int in[3],
 char a, char b, char c,
 int out[3]){
 int x, y;

add_loop:
 for (int i=0; i<3; i++){
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

�27

set_directive_resource -core RAM_1P "foo" in
set_directive_pipeline "foo/add_loop"

C programming for HLS (1)

Vivado HLS supports “normal” ANSI C and C++

Under several restriction, most syntax can be synthesized

Exceptions: pointers, recursions, memory allocations, OS I/Os…

main() for testbench, some function will be the “top-level module”

Everything are allowed in testbench

�28

C programming for HLS (2)

Still understandable / executable as a software

But it’s “hardware description”

Fine-tuned software will be very insufficient with HLS: 
different optimization is required for HLS design

�29

Example: Least Common Multiple

Very simple algorithm to
calculate LCM

With C test bench

int lcm(int a, int b){
 int x = a*b;

 // make a > b
 if (a<b){
 int tmp=a;
 a = b;
 b = tmp;
 }

 int r = a%b;
 while (r!=0){
 a=b;
 b=r;
 r=a%b;
 }
 return x/b;
}

�30

C Testbench

Just call the lcm() function

Show the result by printf()

#include <stdio.h>

int lcm(int, int);

int main(){
 printf("2,3 %d\n", lcm(2,3));
 printf("5,12 %d\n", lcm(5,12));

}

�31

Vivado HLS design flow
Write source code + testbench

Just compile and run to test as a software

C Synthesis with Vivado HLS

RTL Co-Simulation to verify with C TB + Synthesized RTL

Try optimize along C Synthesis reports

RTL Export → import to RTL design as an IP core

�32

Create Vivado HLS project

Launch Vivado HLS

Not “Vivado” for HDL design

Vivado HLS and Vivado is
different, of course separate
project folders are required

�33

Specify project name+location

“Location/project name”
folder will be created

�34

Add design file

“Add Files” then choose the
design file (lcm.c)

Then set top function by
using “Browse” button

�35

1
2

Add testbench

Just “Add Files” then choose
lcm-tb.c

�36

Set Solution & Select device

Default clock period is 10ns

No problem for Nexys4

Details for solution later

Device is the usual one:

xc7a100tcsg324-1

�37

What’s the “Solution?”

A optimization strategy set including:

Target clock frequency

Target device

Optimization directives in directive file (not by #pragma)

Multiple solutions in single project is possible!

�38

C simulation

Simulate as a software

Project → Run C simulation

Result will appear on the
console

�39

C synthesis

Synthesis is done per
solution basis

RTLs are generated

�40

Synthesis report
Things to be certain:

Latency/Interval

Interface

Circuit size (Utilization) is
undetermined until mapped
in Vivado

�41

Reading the report

Latency and Interval is “?”

Because there’s a “while” loop, the # iterations undetermined

Insert “#pragma HLS LOOP_TRIPCOUNT avg=10” in the while
loop

then the latency is estimated in the report

�42

Launch Co-simulation

C TB + Synthesized RTL

Set “Dump trace” to “All”

C TB is translated to HDL,
results are compared

�43

Co-simulation result

printf() messages in Console

Launch Waveform and see 
the signals

C Inputs/Outputs

Block Level IO Handshake:  
ap_{start,done,…}

�44

Adding Directives

Directives on functions,
variables and loops

In source file (#pragma) or  
in directive file (per solution)

�45

Example: interface directive

Set the lcm() function’s “INTERFACE” to “s_axilite”

And also on argument a and b

Synthesized interface is gathered into single AXI slave
interface

�46

Analysis View

Control state and
dependency graph

Can refer source code

�47

