Reconfigurable Architecture (12)

FPGA Architecture



Basic components

* LB: Logic Block

* CB: Connection Block
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Logic Block

The very basic structure: LUT + FF + MUX
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Interconnect and SB

Multiple horizontal & vertical wires

Not fully-connected: destination
wires are always limited to
reduce # of switches in SB
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LB, CB and wires

Connect wires from logic block
pins to interconnect tracks

Is not fully connected, because of
the same reason

LB




Other components

* |OB (1/O Blocks)




/O pads

Wire bonding

/O pads around the chip

Long wires to the pads RESERY
Flip-chip 0O0O0O0O0OO
O O 0O000 0
Distributed I/O pads Cooooon
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Shorter logic wires and better Dooooooo
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Clock tree
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Logic circuit in textbooks
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Logic circuits in action
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and ...

Register
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Performance depends on:

Number of register (FF) stages

= # of clock cycles to get the result

Combinational delay = logic delay + wire delay

Clock frequency depends on the worst combinational delay
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Make common cases faster

Effective way for basic building blocks, such as:
Adders
Shift registers

Memory elements
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Adders

Daisy-chained full adders
A full adder can be implemented with an LUT

Problem is the carry chain delay
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Shift registers

Daisy-chain of LBs
Delay is not problem, because there are (many) registers

LUTs are just “wires’: not very effective in resource usage
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Memory element

* LUTs are just to form address decoder...




Ineffective!?

LUTs are SRAM cell
A 4-LUT has |6bits,a 6-LUT in modern FPGAs has 64bits
Of course, there’s built-in address decoder

LUTs are ready to be RAM cells, and maybe for shift registers and FIFOs
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Virtex-ll LB organization
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As a basic LB...
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Carry chain for adder
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Shift register chain
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LB+CB+SB=FPGA 7

Indeed, it’s not very effective
Go interconnection after every (LUT+FF+MUX) set
CB delay always follows to LB delay, is too slow

Sophisticated CLB (configurable logic block) provides shorter delay
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Flexibility and Performance

CBs are not always necessary:
Making clusters of several LBs (LUT+FF+MUX sets)
Within the cluster, connections between LB without CB is possible

Of course, the LBs has connections with CBs, regardless of the cluster
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Clustering

* Local wires have simple
organization




Clustering

Carry Chain

* Local wires have simple
organization

Shift Register Chain

B
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Interconnect architecture

Very uniform structure, with wire segments of all same length is not good:
Connecting more LBs in lower latency is important
Use of some wire segments with different length helps

Same to the trains: local trains, rapid trains, express trains, ...
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Virtex-4 & 5

Details are not officially disclosed
Following slides are estimations from several documents from Xilinx

Not very accurate, but just for understanding of modern FPGA architecture
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Xilinx Virtex-4

3 wire types: Double (2 blocks), HeX (6 blocks) and Long (end-to-end)
Double and Hex enables low-latency connections to neighbor LBs

An extension to classical Xilinx FPGA architecture with double, quad and long
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Virtex-4 Interconnect
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Virtex-4 Interconnect

| Hop

—  Single

—  Double




Virtex-4 Interconnect
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Virtex-4 Interconnect

3 Hops

—  Single

— Double
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Xilinx Virtex-5

Comes with 6-LUT
Simply, 50% more wires are required than 4-LUT
L-shaped wires (Pent) is introduced, instead of Hex wires

Enables connections with more neighbor LBs
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Virtex-5 Interconnect
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Virtex-5 Interconnect
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Virtex-5 Interconnect
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Virtex-4 and Virtex-5

Reachable CLBs

Wire segments

Virtex-4  |Virtex-5
1 Hop 12 12
2 Hops o8 96
3 Hops 200 180
Total 280 2388

Virtex-4  |Virtex-5
Double 40 42
ex 120}
Pent - 120
Long 24 138
Total 184 180
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More wirings!

Metal layers increases along the process technology, but no more...!
Virtex-ll 150nm, 6 metal layers (2001)
Virtex-ll Pro 130nm, 7 metal layers (2002)
Virtex-4 90nm, 10 metal layers (2004)
Virtex-5 65nm, | | metal layers (2008)
Virtex-6 40nm, |2 metal layers (2009)
Virtex-7 28nm (201 I)
Virtex Ultrascale 20nm (2014) / Ultascale+ 16nm FinFET
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Input and output

Classically:

TTL (5V), LVTTL (3.3V)

CMOS (5V), LVCMOS (3.3V)

Logic signals = board signals in these standards

With just drivers allowing more source/sink currents
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Classic, single-ended 1/Os

TTL/CMOS signals in 3.3 or 5V

High and Low in the voltage between GND
Simple circuits, but weak for noise and ground-bounces

Signal integrity problem with 66+MHz, such as reflections
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Faster single-ended 1/Os

Impedance matching and termination improves signal integrity

Damping resistors W
(series termination)

Thevenin termination
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Faster single-ended 1/Os

Use of active terminations

HSTL (High-speed transceiver logic) and SSTL (stub series terminated transceiver logic)

SSTL is commonly used in DDRx SDRAMs

With HSTL and SSTL, signal rate of 800~3000Mbps are possible

43



HSTL

Active terminations in all address + data signals, to reduce side effects of
simultaneous switching

Clock signals are with series terminations

QDR-SRAM #1 -SRAM #2
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A 4 C C# K K# A L C Ct K K#
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/ /
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WPS#
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e
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#Sdd
#SMA
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Controller

Source K

Source K# —\/\/\/\
— W
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Delayed K

Delayed K#

Vt=Vddq/2



Differential signaling |/Os

Much faster signal frequency with paired signal wires

LVDS, LVPECL, CML and more standards

Popular in super-speed |/Os: PCl Express, USB, HDMI, ...

Several Gbps with 2 wires: 8~28Gbps per signal pair is available
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LVDS

3.5mA, current mode signaling (with 1.25V of common mode)

With 10002 termination: amplitude of 350mV

P
_I_
—> 1000% >
N
P
1.25V >< ----------------------------------------------------- >< ---------- 350mV
N
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Differential |/O standards

3.75 ——
3.2 T 3.3
Power rails and amplitudes 2.5 )
T
1.5
1.25 T]g 2
0.55
0.3 0.4
; T T

PECL LVPECL RS$S422/485 LVDS GTL GTL+



Many |/O standards are covered

LVTTL (3.3V) LVDS
LVCMOS (3.3/2.5/1.5/1.2V) LVPECL
HSTL (1.8/1.5/1.2V) GTL, GTL+

SSTL (2.5V/1.8V/1.5V) (PCI, PCI-X)



On-chip I/O tweaks

IDELMUX1USED
1

—.0 0> —.0
ILOGIC block in Virtex-4 e e S e
Not just an input buffer P
DCE1 CE1INV | G gE lFFddzZM>LX_D02
Delay element (IDELAY) and 4 registers SCTR N e,
R B
Almost same for output :
DHEV 4RE;/$INV S]H REY IFF3
LBE )

sR Rey | IFF4

ugC70_7_01_011507

Xilinx UGO70 Virtex-4 User Guide



Input registers

Separating off-chip delays and on-chip delays

Off-chip delays are managed by the board designer

On-chip delays are managed by FPGA design tools such as Vivado
These delays should be separated to make problems simple:

Placing registers on all I/O signals are highly recommended

50



/O registers

A_IN A
module some_fast one
( input CLK, RST,
input [7:0] A_IN,
1nput B_IN,
) ;
EXE. FPGA
reg [7:0] A, Device
reg B; >
always @ (posedge CLK) begin
A <= A_IN; _"B’
B <= B_IN; B_lN B
end I |
Board designer adjusts the /O registers align all the
endmodule delay to meet the target frequency signals to clock edge:

maximize the internal timing
margins



DDR signals

SDR (Single Data Rate):

Data signals are aligned on the positive edge of the clock signal
Data frequency = 0.5 x Clock frequency

DDR (Double Data Rate):

Data signals are alighed on both clock edges: Data frequency = Clock freq.
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DDR signals in FPGA

always @ (CLK) works in DDR

Works, but requires |/2 of logic delay
Instead, internal SDR signals with 2x bit width is popular
DDR-2x SDR conversion is done by the I/O block registers

More timing margin in FPGA
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Example of input DDR

CE

Q1

Q2

2 or 3 registers in |OB are used

Some of them operates (@ negedges
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Figure 7-5: Input DDR Timing in SAME_EDGE Mode
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Input DDR in SAME_EDGE Mode

Xilinx UGO70 Virtex-4 User Guide

54



Delay element...!?

Shorter delay is better, but uniform delay is crucial
Wire delays are always slightly different in high-speed parallel bus
Fine-grain insertion of delay elements enables higher data rates or frequency

Independent delay elements on every input block: calibration with test
pattern on system startup
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Clock tree
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Clock Capable Pin

* Are very limited:
*  Only half of them are available in single-ended

* Not all clock capable pins are same:
detail follows
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Global Clock

* Global Clock Buffer

AAA

Clock Backbone




Regional Clock

Not all clock signals are required in everywhere

For example, memory controller requires
several clock signals between memory
devices and controller

Regional clock is a good alternative

More # of clock signals are available

Ty

50CLB High

<+—>

Clock Region

ANA

Clock Backbone
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Regional Clock

Each clock region have:
Several clock capable I/O pins and
Several regional clock buffers

In some devices, several clock region has their
own clock management tiles

AA | AA | AA AA | AA

AA

CMT Backbone
CMT Calumn

AAA
BUFG

Clock Béokbone |

CMT Column

CMT Backbone

VV_ | VV VV VV VV

VV
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Summary

FPGA has basically uniform structure: LB, CB and SB

LB for programmable logic, CB+SB for programmable wires
Several dedicated components are essential: |O blocks and clock buffers

More dedicated blocks are on modern FPGA:s:

RAMs, DSPs, High-speed |I/Os and CPUs: had no time to talk about this...
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Improves LB structure and functionality

LUT + FF + MUX is the very basic
Effectiveness for common building block is inportant
LUTs as memory elements or shift register

Carry chain for faster adder implementation
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Clustering: improves LB connectivity

Adding direct LB connections in a cluster without requiring CB or SB
Limited to simple structures, but powerful in:
Using 2 or more LUTs to form a larger LUT logic

Making longer shift-register chains or adder carry chains
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Improving interconnections

Neighbor-to-neighbor connection is not perfect

Long-distance and multiple-destination connections are important

Availability of more # of destination LBs is crucial for better performance

Interconnection topology is a key of latest FPGA devices
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Off-chip 1/Os

Supports various single-ended and differential 1/O standards
To connect with various external devices

In several cases, on-FPGA termination registers are available to reduce on-
board resistors

Supports high-speed serial signals such as PCle, USB or HDMI

Now FPGAs are used a hub of system
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On-chip I/Os

/O blocks have delay elements and registers
Delay elements enables the delay calibration on startup

Registers separates on- and off-chip delay, also useful for DDR operations
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Clock resources

Dedicated clock input pins, clock buffers and clock-tree wires
Global clocks reaches to everywhere on FPGA
Global clock signals are synthesized in RTL without special cares

Explicit use of regional clock enables to use local clock signals for several
modules, such as external memory controllers
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